Organisation Modelling for the Dynamics of Complex Biological Processes

  • Tibor Bosse
  • Catholijn M. Jonker
  • Jan Treur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2934)


This paper shows how an organisation modelling approach can be used to model the dynamics of biological organisation, in particular the circulatory system in biological organisms (mammals). This system consists of a number of components that are connected and grouped together. Dynamic properties at different levels of aggregation of this organisation model have been identified, and interlevel relationships between these dynamic properties at different aggregation levels were made explicit. Based on the executable properties simulation has been performed and properties have been checked for the produced simulation traces. Thus the logical relationships between properties at different aggregation levels have been verified. Moreover, relationships between roles within the organisation model and realisers of these roles have been defined. This case study shows that within biological and medical domains organisation modelling techniques can play a useful role in modelling complex systems at a high level of abstraction.


Dynamic Property Multiagent System Organisation Modelling Group Property Group Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M.: The Imperative Future: Principles of Executable Temporal Logic. Research Studies Press Ltd./ John Wiley & Sons (1996)Google Scholar
  2. 2.
    Ferber, J.: Multiagent Systems. Addison Wesley, Reading (1999)Google Scholar
  3. 3.
    Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organisations in multi-agent systems. In: Proceedings of the Third International Conference on Multi-Agent Systems (ICMAS 1998), pp. 128–135. IEEE Computer Society Press, Los Alamitos (1998)CrossRefGoogle Scholar
  4. 4.
    Ferber, J., Gutknecht, O.: Operational Semantics of a role-based agent architecture. In: Jennings, N.R. (ed.) ATAL 1999. LNCS (LNAI), vol. 1757, pp. 205–217. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P., Treur, J.: Organization Models and Behavioural Requirements Specification for Multi-Agent Systems. In: Demazeau, Y., Garijo, F. (eds.) Multi-Agent System Organisations. Proceedings of the 10th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW 2001. LNCS (LNAI), Springer, Heidelberg (2002) (to appear)Google Scholar
  6. 6.
    Fung, Y.C.: Biodynamics: Circulation. Springer, New York (1984)Google Scholar
  7. 7.
    Greenway, C.V.: Mechanisms and quantitative assessment of drug effects on cardiac output with a new model of the circulation. Pharm. Rev. 33(4), 213 (1982)Google Scholar
  8. 8.
    Jonker, C.M., Letia, I.A., Treur, J.: Diagnosis of the Dynamics within an Organisation by Trace Checking of Behavioural Requirements. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222, pp. 17–32. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Jonker, C.M., Treur, J.: Compositional Verification of Multi-Agent Systems: a Formal Analysis of Pro-activeness and Reactiveness. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 350–380. Springer, Heidelberg (1998); Extended version in: International Journal of Cooperative Information Systems 11, 51–92 (2002)Google Scholar
  10. 10.
    Jonker, C.M., Treur, J.: Relating Structure and Dynamics in an Organisation Model. In: Sichman, J.S., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol. 2581, pp. 50–69. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Jonker, C.M., Treur, J., Wijngaards, W.C.A.: Temporal Languages for Simulation and Analysis of the Dynamics Within an Organisation. In: Dunin-Keplicz, B., Nawarecki, E. (eds.) CEEMAS 2001. LNCS (LNAI), vol. 2296, pp. 151–160. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Kreitner, R., Kunicki, A.: Organisational Behavior. McGraw – Hill, New York (2001); Li, J.K.-J.: Arterial System Dynamics. New York University Press, NewYork (1987)Google Scholar
  13. 13.
    Lomi, A., Larsen, E.R.: Dynamics of Organizations: Computational Modeling and Organization Theories. AAAI Press, Menlo Park (2001)Google Scholar
  14. 14.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Martin, J.F., Schneider, A.M., Mandel, J.E., et al.: A new cardiovascular model for real-time applications. Trans. Soc. Comp. Sim. 3(1), 31 (1986)Google Scholar
  16. 16.
    Milnor, W.R.: Hemodynamics, 2nd edn. Williams & Wilkins, Baltimore (1989)Google Scholar
  17. 17.
    Mintzberg, H.: The Structuring of Organisations. Prentice Hall, Englewood Cliffs (1979)Google Scholar
  18. 18.
    Noordergraaf, A.: Circulatory System Dynamics. Academic Press, New York (1978)Google Scholar
  19. 19.
    Prietula, M., Gasser, L., Carley, K.: Simulating Organizations. MIT Press, Cambridge (1997)Google Scholar
  20. 20.
    Rideout, V.C.: Mathematical and Computer Modelling of Physiological Systems. Prentice Hall, Englewood Cliffs (1991)Google Scholar
  21. 21.
    Rizzi, M., Baltes, M., Theobald, U., Reuss, M.: In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol. Bioeng. 55, 592–608 (1997)CrossRefGoogle Scholar
  22. 22.
    Rohwer, J.M., Meadow, N.D., Roseman, S., Westerhoff, H.V., Postma, P.W.: Understanding glucose transport by the bacterial phosphoenolpyruvate: glycose phosphotransferase system on the basis of kinetic measurements in vitro. J. Biol. Chem. 275(45), 34909–34921 (2000)CrossRefGoogle Scholar
  23. 23.
    Slate, J.B., Sheppard, L.C.: Automatic control of blood pressure by drug infusion. IEE Proc., Pt. A 129(9), 639 (1982)Google Scholar
  24. 24.
    Wang, J., Gilles, E.D., Lengeler, J.W., Jahreis, K.: Modeling of inducer exclusion and catabolite repression based on a PTS-dependent sucrose and non-PTS-dependent glycerol transport systems in Escherichia Coli K-12 and its experimental verification. J. Biotechnol. 92(2), 133–158 (2001)Google Scholar
  25. 25.
    Weiss, G. (ed.): Multiagent Systems. MIT Press, Cambridge (1999)Google Scholar
  26. 26.
    Westerhoff, H.V.: The silicon cell, not dead but live! Metab. Eng. 3(3), 207–210 (2001)CrossRefGoogle Scholar
  27. 27.
    Westerhof, N., Noordergraaf, A.: Reduced models of the systemic arteries. In: Proc. 8th Int. Conf. Med. Eng., Chicago (1969)Google Scholar
  28. 28.
    Yu, C., Roy, R.J., Kaufman, H.: A circulatory model for combined nitroprussidedopamine therapy in acute heart failure. Med. Prog. Tech. 16, 77 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Tibor Bosse
    • 1
  • Catholijn M. Jonker
    • 1
  • Jan Treur
    • 1
  1. 1.Department of Artificial IntelligenceVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations