Advertisement

Integration of Generic Motivations in Social Hybrid Agents

  • Fenintsoa Andriamasinoro
  • Remy Courdier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2934)

Abstract

Most hybrid agent architectures are constructed with a hierarchical succession of reactive (at a lower level) and cognitive (at a higher level) layers. Each of these layers represents a behavior, a function, a decision, etc. Instead of using such functional layers, we propose in this paper a generic model of a social hybrid agent, which is based on natural (human/animal) motivations of the agent. We discuss here the contribution of our approach in hybrid agent modeling. The present work uses the American psychologist Abraham Maslow’s pyramid of needs. The basis of this modeling uses the result of an existing psychological study.

Keywords

Multiagent System Generic Motivation State Ratio Cognitive Agent Functional Motivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andriamasinoro, F., Courdier, R.: Un Modèle Dynamique de Comportement Agents à base de Besoins. In: Segrouchni, A.E.-F., Magnin, L. (eds.) Journées Francophones sur l’Intelligence Artificielle Distribuée et les Systèmes Multi-Agents (JFIADSMA 2001), Montreal, Canada, November 12–15, Hermès Editions (2001)Google Scholar
  2. 2.
    Andriamasinoro, F., Courdier, R.: The Basic Instinct of Autonomous Cognitive Agents. In: International Conference on Autonomous Intelligent System (ICAIS 2002), Geelong, Australia, February 12th-15th (2002)Google Scholar
  3. 3.
    Au, S., Liang, J., Parameswaran, N.: Progressive plan execution in a dynamic world. In: Bergmann, R., Kott, A. (eds.) Dynamic and Uncertain Environments Workshop in Artificial Intelligent Planning, Pittsburgh USA. AAAI, Menlo Park (1998)Google Scholar
  4. 4.
    Bonabeau, E., Theraulaz, G.: L’Intelligence Collective. Edition Hermès (1994)Google Scholar
  5. 5.
    Brazier, F., Dunin-Keplicz, B., Treur, J., Verbrugge, R.: Beliefs, Intentions and DESIRE. Modeling internal Dynamic behavior of BDI agents. In: Meyer, J.-J.C., Schobbens, P.-Y. (eds.) ModelAge-WS 1997. LNCS (LNAI), vol. 1760, pp. 36–56. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Ferber, J.: Les systèmes multi-agents, vers une intelligence collective. Inter- Editions (1997)Google Scholar
  7. 7.
    Ferguson, I.A.: TouringMachines: An Architecture for Dynamic, Rational, Mobile Agents. PhD thesis, Clare Hall, University of Cambridge, UK (1992)Google Scholar
  8. 8.
    Carlos, G., Pablo, G.P., Martinez, N.J.: Action Selection Properties in a Software Simulated Agent. In: Cairó, O., Cantú, F.J. (eds.) MICAI 2000. LNCS, vol. 1793, pp. 634–648. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Grosz, B.J., Kraus, S.: Collaborative plans for complex group actions. Artificial Intelligence 86, 269–357 (1996)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Jennings, N.R.: Coordination Techniques for Distributed Artificial Intelligence. In: O’Hare, G.M.P., Jennings, N.R. (eds.) Foundations of Distributed Artificial Intelligence. Wiley, Chichester (1996)Google Scholar
  11. 11.
    Kurihara, S., Aoyagi, S., Onai, R.: Adaptive Selection of Reactive/Deliberate Planning for the Dynamic Environment, - A Proposal and Evaluation of MRR-planning. In: Boman, M., Van de Velde, W. (eds.) MAAMAW 1997. LNCS, vol. 1237, Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Malec, J.: On Augmenting Reactivity with Deliberation in a Controlled Manner. In: Hannebauer, M., Wendler, J., Pagello, E. (eds.) ECAI-WS 2000. LNCS (LNAI), vol. 2103, p. 76. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Maslow, A.H.: The Maslow business Reader. In: Collins, D.S. (ed.), J.Wiley & Sons, Inc., Chichester (2000)Google Scholar
  14. 14.
    Mavromichalis, V.K., Vouros, G.: ICAGENT: Balancing between Reactivity and Deliberation. In: Hannebauer, M., Wendler, J., Pagello, E. (eds.) ECAI-WS 2000. LNCS (LNAI), vol. 2103, p. 53. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Müller, J.P.: A conceptual model of agent interaction. In: Deen, S.M. (ed.) Draft proceedings of the Second International Working Conference on Cooperating Knowledge Based Systems (CKBS 1994). DAKE Centre, pp. 389–404. University of Keele, UK (1994)Google Scholar
  16. 16.
    Pietro, P., Timothy, N., Jennings, N.R.: Modeling sociality in the BDI framework. In: Proceedings in 1stAsia Pacific Conference on Intelligent Agent Technology, Hong-Kong (1999)Google Scholar
  17. 17.
    Sullivan, D., Grosz, B., Kraus, B.: Intention Reconciliation by Collaborative Agents. In: 4th International Conference on Multi-Agent Systems (ICMAS 2000), Boston USA, IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  18. 18.
    Tambe, M.: Executing Team Plans in Dynamic Multi-agent environments. In: AAAI Fall Symposium on Plan Execution, Boston, USA (1996)Google Scholar
  19. 19.
    Michael, W.: An Introduction To Multiagent System, March 2002. John Wiley & Sons, Chichester (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Fenintsoa Andriamasinoro
    • 1
  • Remy Courdier
    • 1
  1. 1.IREMIAUniversity of La RéunionMessag CedexFrance

Personalised recommendations