Metaheuristics for Natural Language Tagging

  • Lourdes Araujo
  • Gabriel Luque
  • Enrique Alba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3102)


This work compares different metaheuristics techniques applied to an important problem in natural language: tagging. Tagging amounts to assigning to each word in a text one of its possible lexical categories (tags) according to the context in which the word is used (thus it is a disambiguation task). Specifically, we have applied a classic genetic algorithm (GA), a CHC algorithm, and a Simulated Annealing (SA). The aim of the work is to determine which one is the most accurate algorithm (GA, CHC or SA), which one is the most appropriate encoding for the problem (integer or binary) and also to study the impact of parallelism on each considered method. The work has been highly simplified by the use of MALLBA, a library of search techniques which provides generic optimization software skeletons able to run in sequential, LAN and WAN environments. Experiments show that the GA with the integer encoding provides the more accurate results. For the CHC algorithm, the best results are obtained with binary coding and a parallel implementation. SA provides less accurate results than any of the evolutionary algorithms.


Genetic Algorithm Simulated Annealing Binary Code Simulated Annealing Algorithm Parallel Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alba, E., Almeida, F., Blesa, M.J., Cabeza, J., Cotta, C., Díaz, M., Dorta, I., Gabarró, J., León, C., Luna, J., Moreno, L.M., Pablos, C., Petit, J., Rojas, A., Xhafa, F.: MALLBA: A library of skeletons for combinatorial optimisation. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 927–932. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation 6(5), 443–462 (2002)CrossRefGoogle Scholar
  3. 3.
    Araujo, L.: Part-of-speech tagging with evolutionary algorithms. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 230–239. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Araujo, L.: Studying the advantages of a messy evolutionary algorithm for natural language tagging. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1951–1962. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Charniak, E.: Statistical Language Learning. MIT Press, Cambridge (1993)Google Scholar
  6. 6.
    Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)Google Scholar
  7. 7.
    DeRose, S.J.: Grammatical category disambiguation by statistical optimization. Computational Linguistics 14, 31–39 (1988)Google Scholar
  8. 8.
    Eshelman, L.J.: The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. In: Proceedings of the First Workshop on FOGA, San Mateo, CA, pp. 265–283. Morgan Kauffman, San Francisco (1991)Google Scholar
  9. 9.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Merialdo, B.: Tagging English text with a probabilistic model. Computational Linguistics 20(2), 155–172 (1994)Google Scholar
  11. 11.
    Nelson, F.W., Kucera, H.: Manual of information to accompany a standard corpus of present-day edited American English, for use with digital computers. Technical report, Department of Linguistics, Brown University (1979)Google Scholar
  12. 12.
    Schutze, H., Singer, Y.: Part of speech tagging using a variable memory Markov model. In: Proc. of the 1994 of the Association for Computational Linguistics. Association for Computational Linguistics (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Lourdes Araujo
    • 1
  • Gabriel Luque
    • 2
  • Enrique Alba
    • 2
  1. 1.Dpto. Sistemas Informáticos y Programación, Facultad de InformáticaUniv. ComplutenseMadridSPAIN
  2. 2.Dpto. de Lenguajes y Ciencias de la ComputaciónE.T.S. Ingeniería Informática, Campus TeatinosMálagaSPAIN

Personalised recommendations