Experimental Evaluation of Discretization Schemes for Rule Induction

  • Jesus Aguilar-Ruiz
  • Jaume Bacardit
  • Federico Divina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3102)

Abstract

This paper proposes an experimental evaluation of various discretization schemes in three different evolutionary systems for inductive concept learning. The various discretization methods are used in order to obtain a number of discretization intervals, which represent the basis for the methods adopted by the systems for dealing with numerical values. Basically, for each rule and attribute, one or many intervals are evolved, by means of ad–hoc operators. These operators, depending on the system, can add/subtract intervals found by a discretization method to/from the intervals described by the rule, or split/merge these intervals. In this way the discretization intervals are evolved along with the rules. The aim of this experimental evaluation is to determine for an evolutionary–based system the discretization method that allows the system to obtain the best results. Moreover we want to verify if there is a discretization scheme that can be considered as generally good for evolutionary–based systems. If such a discretization method exists, it could be adopted by all the systems for inductive concept learning using a similar strategy for dealing with numerical values. Otherwise, it would be interesting to extract relationships between the performance of a system and the discretizer used.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: International Conference on Machine Learning, pp. 194–202 (1995)Google Scholar
  2. 2.
    Liu, H., Hussain, F., Tan, C., Dash, M.: Discretization: An enabling technique. Journal of Data Mining and Knowledge Discovery 6, 393–423 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bacardit, J., Garrel, J.M.: Evolution of adaptive discretization intervals for a rulebased genetic learning system. In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, p. 677. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  4. 4.
    Bacardit, J., Garrel, J.M.: Evolving multiple discretizations with adaptive intervals for a pittsburgh rule-based genetic learning classifier system. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1818–1831. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Giráldez, R., Aguilar-Ruiz, J., Riquelme, J.: Natural coding: A more efficient representation for evolutionary learning. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 979–990. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Divina, F., Keijzer, M., Marchiori, E.: A method for handling numerical attributes in GA-based inductive concept learners. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 898–908. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Divina, F., Marchiori, E.: Evolutionary concept learning. In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, pp. 343–350. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  8. 8.
    Quinlan, J.R.: Induction of decision trees. In: Shavlik, J.W., Dietterich, T.G. (eds.) Readings in Machine Learning, Morgan Kaufmann, San Francisco (1986); Originally published in Machine Learning 1, 81–106 (1986)Google Scholar
  9. 9.
    Giraldez, R., Aguilar-Ruiz, J., Riquelme, J., Ferrer-Troyano, F., Rodriguez, D.: Discretization oriented to decision rules generation. Frontiers in Artificial Intelligence and Applications 82, 275–279 (2002)Google Scholar
  10. 10.
    Fayyad, U., Irani, K.: Multi-interval discretization of continuos attributes as preprocessing for classification learning. In: Proceedings of the 13th International Join Conference on Artificial Intelligence, pp. 1022–1027. Morgan Kaufmann Publishers, San Francisco (1993)Google Scholar
  11. 11.
    Rissanen, J.: Stochastic Complexity in Statistical Inquiry. World Scientific, River Edge (1989)MATHGoogle Scholar
  12. 12.
    Aguilar-Ruiz, J., Riquelme, J., Toro, M.: Evolutionary learning of hierarchical decision rules. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 33(2), 324–331 (2003)CrossRefGoogle Scholar
  13. 13.
    DeJong, K.A., Spears, W.M.: Learning concept classification rules using genetic algorithms. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 651–656 (1991)Google Scholar
  14. 14.
    Bacardit, J., Garrell, J.M.: Bloat control and generalization pressure using the minimum description length principle for a pittsburgh approach learning classifier system. In: Proceedings of the 6th International Workshop on Learning Classifier Systems. LNCS (LNAI), Springer, Heidelberg (2003) (in press)Google Scholar
  15. 15.
    Blake, C., Merz, C.: UCI repository of machine learning databases (1998)Google Scholar
  16. 16.
    Langdon, W.B.: Fitness causes bloat in variable size representations. Technical Report CSRP-97-14, University of Birmingham, School of Computer Science (1997) Position paper at the Workshop on Evolutionary Computation with Variable Size Representation at ICGA 1997 (1997)Google Scholar
  17. 17.
    Llorà, X., Garrell, J.M.: Knowledge-independent data mining with fine-grained parallel evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 461–468. Morgan Kaufmann, San Francisco (2001)Google Scholar
  18. 18.
    Cantu-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7, 54–68 (2003)CrossRefGoogle Scholar
  19. 19.
    Stone, C., Bull, L.: For real! xcs with continuous-valued inputs. Evolutionary Computation Journal 11, 298–336 (2003)CrossRefGoogle Scholar
  20. 20.
    De Mántaras, R.L.: A distance-based attribute selection measure for decision tree induction. Machine Learning 6, 81–92 (1991)CrossRefGoogle Scholar
  21. 21.
    Kerber, R.: Chimerge: Discretization of numeric attributes. In: Proc. of AAAI 1992, San Jose, CA, pp. 123–128 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jesus Aguilar-Ruiz
    • 1
  • Jaume Bacardit
    • 2
  • Federico Divina
    • 3
  1. 1.Dept. of Computer ScienceUniversity of SevilleSevilleSpain
  2. 2.Intelligent Systems Research GroupUniversitat Ramon LlullBarcelonaSpain
  3. 3.Dept. of Computer ScienceVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations