SWAF: Swarm Algorithm Framework for Numerical Optimization

  • Xiao-Feng Xie
  • Wen-Jun Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3102)


A swarm algorithm framework (SWAF), realized by agent-based modeling, is presented to solve numerical optimization problems. Each agent is a bare bones cognitive architecture, which learns knowledge by appropriately deploying a set of simple rules in fast and frugal heuristics. Two essential categories of rules, the generate-and-test and the problem-formulation rules, are implemented, and both of the macro rules by simple combination and subsymbolic deploying of multiple rules among them are also studied. Experimental results on benchmark problems are presented, and performance comparison between SWAF and other existing algorithms indicates that it is efficiently.


Particle Swarm Optimization Simulated Annealing Differential Evolution Taboo Search Numerical Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J.R.: A theory of the origins of human knowledge. Artificial Intelligence 40, 313–351 (1989)CrossRefGoogle Scholar
  2. 2.
    Anderson, J.R.: ACT: A simple theory of complex cognition. American Psychologist 51, 355–365 (1996)CrossRefGoogle Scholar
  3. 3.
    Bäck, T., Hammel, U., Schwefel, H.-P.: Evolutionary computation: comments on the history and current state. IEEE Trans. Evolutionary Computation 1, 3–17 (1997)CrossRefGoogle Scholar
  4. 4.
    Bak, P., Chialvo, D.R.: Adaptive learning by extremal dynamics and negative feedback. Physical Review E 63, 031912, 1–12 (2001)Google Scholar
  5. 5.
    Bandura, A.: Social Learning Theory. Prentice Hall, Englewood Cliffs (1977)Google Scholar
  6. 6.
    Beyer, H.-G., Schwefel, H.-P.: Evolution strategies: a comprehensive introduction. Natural Computing 1, 35–52 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. USA 99, 7280–7287 (2002)CrossRefGoogle Scholar
  8. 8.
    Boyd, R., Richerson, P.J.: The Origin and Evolution of Cultures. Oxford Univ. Press, Oxford (2004)Google Scholar
  9. 9.
    Chase, V.M., Hertwig, R., Gigerenzer, G.: Visions of rationality. Trends in Cognitive Sciences 2, 206–214 (1998)CrossRefGoogle Scholar
  10. 10.
    Chialvo, D.R., Bak, P.: Learning from mistakes. Neuroscience 90, 1137–1148 (1999)CrossRefGoogle Scholar
  11. 11.
    Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evolutionary Computation 6, 58–73 (2002)CrossRefGoogle Scholar
  12. 12.
    Cvijovi, D., Klinowski, J.: Taboo search: an approach to the multiple minima problem. Science 267, 664–666 (1995)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186, 311–338 (2000)zbMATHCrossRefGoogle Scholar
  14. 14.
    Dekkers, A., Aarts, E.: Global optimization and simulated annealing. Mathematical Programming 50, 367–393 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Dietterich, T.G.: Learning at the knowledge level. Machine Learning 1, 287–316 (1986)Google Scholar
  16. 16.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Systems, Man, and Cybernetics - Part B 26, 1–13 (1996)Google Scholar
  17. 17.
    Farmani, R., Wright, J.A.: Self-adaptive fitness formulation for constrained optimization. IEEE Trans. Evolutionary Computation 7, 445–455 (2003)CrossRefGoogle Scholar
  18. 18.
    Flinn, M.V.: Culture and the evolution of social learning. Evolution and Human Behavior 18, 23–67 (1997)CrossRefGoogle Scholar
  19. 19.
    Galef, B.G.: Why behaviour patterns that animals learn socially are locally adaptive. Animal Behaviour 49, 1325–1334 (1995)CrossRefGoogle Scholar
  20. 20.
    Heyes, C.M.: Social learning in animals: categories and mechanisms. Biological Reviews 69, 207–231 (1994)CrossRefGoogle Scholar
  21. 21.
    Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  22. 22.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE Int. Conf. on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)Google Scholar
  23. 23.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  25. 25.
    Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR - an architecture for general intelligence. Artificial Intelligence 33, 1–64 (1987)CrossRefGoogle Scholar
  26. 26.
    Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation 4, 1–32 (1996)CrossRefGoogle Scholar
  27. 27.
    Newell, A.: The knowledge level. Artificial Intelligence 18, 87–127 (1982)CrossRefGoogle Scholar
  28. 28.
    Okano, H., Hirano, T., Balaban, E.: Learning and memory. Proc. Natl. Acad. Sci. USA 97, 12403–12404 (2000)CrossRefGoogle Scholar
  29. 29.
    Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evolutionary Computation 4, 284–294 (2000)CrossRefGoogle Scholar
  30. 30.
    Salomon, R.: Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. Biosystems 39, 263–278 (1996)CrossRefGoogle Scholar
  31. 31.
    Simon, H.A.: Invariants of human behavior. Annual Review of Psychology 41, 1–19 (1990)CrossRefGoogle Scholar
  32. 32.
    Storn, R., Price, K.V.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization 11, 341–359 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Thorndike, E.L.: Animal intelligence: An experimental study of the associative processes in animals. Psychological Review, Monograph Supplement, 2 (1898)Google Scholar
  34. 34.
    Todd, P.M., Gigerenzer, G.: Simple heuristics that make us smart. Behavioral and Brain Sciences 23, 727–741 (1999)CrossRefGoogle Scholar
  35. 35.
    Tsui, K.C., Liu, J.M.: Multiagent diffusion and distributed optimization. In: Int. Joint Conf. on Autonomous Agents and Multiagent Systems, Melbourne, Australia, pp. 169–176 (2003)Google Scholar
  36. 36.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evolutionary Computation 1, 67–82 (1997)CrossRefGoogle Scholar
  37. 37.
    Zhang, W.J., Xie, X.F.: DEPSO: hybrid particle swarm with differential evolution operator. In: IEEE Int. Conf. on Systems, Man & Cybernetics, Washington D C, USA, pp. 3816–3821 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Xiao-Feng Xie
    • 1
  • Wen-Jun Zhang
    • 1
  1. 1.Institute of MicroelectronicsTsinghua UniversityBeijingChina

Personalised recommendations