Topological Interpretation of Crossover

  • Alberto Moraglio
  • Riccardo Poli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3102)


In this paper we give a representation-independent topological definition of crossover that links it tightly to the notion of fitness landscape. Building around this definition, a geometric/topological framework for evolutionary algorithms is introduced that clarifies the connection between representation, genetic operators, neighbourhood structure and distance in the landscape. Traditional genetic operators for binary strings are shown to fit the framework. The advantages of this interpretation are discussed


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Back et al, 1997]
    Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Transaction on Evolutionary Computation (April 1996)Google Scholar
  2. [Culberson, 1995]
    Culberson, J.C.: Mutation-crossover isomorphism and the construction of discriminating functions. Evol. Comp. 2, 279–311 (1995)CrossRefGoogle Scholar
  3. [Davis, 1991]
    Davis, L.: Handbook of Genetic Algorithms. van Nostrand Reinhold, New York (1991)Google Scholar
  4. [Gitchoff & Wagner, 1996]
    Gitchoff, P., Wagner, G.P.: Recombination Induced HyperGraphs: A New Approach to Mutation- Recombination Isomorphism. Journal of Complexity, 37–43 (1996)Google Scholar
  5. [Glover, 2002]
    Glover, F.W. (ed.): Handbook of Metaheuristics. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  6. [Jones, 1995]
    Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD dissertation, University of New Mexico (1995)Google Scholar
  7. [Langdon & Poli, 2002]
    Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)MATHGoogle Scholar
  8. [Pardalos & Resende, 2002]
    Pardalos, P.M., Resende, M.G.C. (eds.): Handbook of Applied Optimization. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  9. [Radcliffe, 1992]
    Radcliffe, N.J.: Nonlinear genetic representations. In: Manner, R., Manderick, B. (eds.) Proceedings of the 2 nd Conference on Parallel Problems Solving from Nature, pp. 259–268. Morgan Kaufmann, San Francisco (1992)Google Scholar
  10. [Radcliffe, 1994]
    Radcliffe, N.J.: The Algebra of Genetic Algorithms. Annals of Maths and Artificial Intelligence 10, 339–384 (1994)MATHCrossRefMathSciNetGoogle Scholar
  11. [Reidys & Stadler, 2002]
    Reidys, C.M., Stadler, P.F.: Combinatorial Landscapes. SIAM Review 44, 3–54 (2002)MATHCrossRefMathSciNetGoogle Scholar
  12. [Stephens & Poli, 2004]
    Stephens, R., Poli, R.: EC Theory “in Theory”: Towards a Unification of Evolutionary Computation Theory. In: Menon, A. (ed.) Frontiers of Evolutionary Computation, pp. 129–156. Kluwer (2004)CrossRefGoogle Scholar
  13. [Surry, 1998]
    Surry, P.D.: A Prescriptive Formalism for Constructing Domain-specific Evolutionary Algorithms. PhD dissertation, University of Edinburgh (1998)Google Scholar
  14. [Syswerda, 1989]
    Syswerda, G.: Uniform crossover in genetic algorithms. In: Schaer, J.D. (ed.) Proceedings of the International Conference on Genetic Algorithms, San Mateo (CA), Morgan Kaufmann Publishers, San Francisco (1989)Google Scholar
  15. [Van der Vel, 1993]
    van de Vel, M.: Theory of Convex Structures. Elsevier, Amsterdam (1993)MATHGoogle Scholar
  16. [Whitley, 1994]
    Whitley, D.: A Genetic Algorithm Tutorial. Statistics and Computing 4, 65–85 (1994)CrossRefGoogle Scholar
  17. [Wolpert & Macready, 1996]
    Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Transaction on Evolutionary Computation (April 1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alberto Moraglio
    • 1
  • Riccardo Poli
    • 1
  1. 1.Department of Computer ScienceUniversity of EssexColchesterUK

Personalised recommendations