Evolving a Self-Repairing, Self-Regulating, French Flag Organism

  • Julian Francis Miller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3102)


A method for evolving programs that construct multicellular structures (organisms) is described. The paper concentrates on the difficult problem of evolving a cell program that constructs a fixed size French flag. We obtain and analyze an organism that shows a remarkable ability to repair itself when subjected to severe damage. Its behaviour resembles the regenerative power of some living organisms.


Artificial Life Cell Program Cartesian Genetic Program Moore Neighbourhood Adder Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banzhaf, W., Miller, J.F.: The Challenge of Complexity. In: Evolutionary Computation, Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  2. 2.
    Bentley, P.J., Kumar, S.: Three Ways to Grow Designs: A for an Evolutionary Design Problem. In: Proceedings of the Computation, pp. 35–43. IEEE Press, Los Alamitos (1999)Google Scholar
  3. 3.
    Bongard, J.C., Pfeifer, R.: Repeated Structure and Dissociation of Genotypic and Phenotypic Complexity in Artificial Ontogeny. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 829–836. Morgan-Kaufmann, San Francisco (2001)Google Scholar
  4. 4.
    Dellaert, F.: Toward a Biologically Defensible Model of Development, Masters thesis, Dept. of Computer Eng. and Science, Case Western Reserve University (1995)Google Scholar
  5. 5.
    Eggenberger, P.: Evolving morphologies of simulated 3D organisms based on differential gene expression. In: Proceedings of 4th European Conf. on Artificial Life, pp. 205–213 (1997)Google Scholar
  6. 6.
    Fleischer, K., Barr, A.H.: A simulation testbed for the study of multicellular development: The multiple mechanisms of morphogenesis. In: Langton, C.G. (ed.) Proceedings of the 3rd Workshop on Artificial Life, pp. 389–416. Addison-Wesley, Reading (1992)Google Scholar
  7. 7.
    Furusawa, C., Kaneko, K.: Emergence of Multicellular Organisms with Dynamic Differentiation and Spatial Pattern. In: Adami, C., et al. (eds.) Proceedings of the 6th International Conference on Artificial Life, MIT Press, Cambridge (1998)Google Scholar
  8. 8.
    Gierer, A., Berking, S., Bode, H., David, C.N., Flick, K., Hansmann, G., Schaller, H., Trenkner, E.: Regeneration of hydra from reaggregated cells. Nature New Biology 239, 98–101 (1972)CrossRefGoogle Scholar
  9. 9.
    Harold, F.M.: The Way of The Cell. Oxford University Press, Oxford (2001)Google Scholar
  10. 10.
    Hogeweg, P.: Evolving Mechanisms of Morphogenesis: on the Interplay between Differential Adhesion and Cell Differentiation. J. Theor. Biol. 203, 317–333 (2000)CrossRefGoogle Scholar
  11. 11.
    Hogeweg, P.: Shapes in the Shadow: Evolutionary Dynamics of Morphogenesis. Artificial Life 6, 85–101 (2000)CrossRefGoogle Scholar
  12. 12.
    Kumar, S., Bentley, P.J. (eds.): On Growth, Form and Computers. Academic Press, London (2003)Google Scholar
  13. 13.
    Miller, J.F.: Evolving Developmental Programs for Adaptation, Morphogenesis and Self- Repair. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 256–265. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Streichert, F., Spieth, C., Ulmer, H., Zell, A.: Evolving the Ability of Limited Growth and Self-Repair for Artificial Embryos. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 289–298. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Vassilev, V.K., Miller, J.F.: The Advantages of Landscape Neutrality in Digital Circuit Evolution. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 252–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Wolpert, L.: Principles of Development. Oxford University Press, Oxford (1998)Google Scholar
  18. 18.
    Yu, T., Miller, J.F.: Neutrality and the evolvability of Boolean function landscape. In: Proceedings of the 4th European Conference on Genetic Programming, pp. 204–217. Springer, Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Julian Francis Miller
    • 1
  1. 1.Department of ElectronicsUniversity of YorkHeslingtonUK

Personalised recommendations