Advertisement

The Ising Model on the Ring: Mutation Versus Recombination

  • Simon Fischer
  • Ingo Wegener
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3102)

Abstract

The investigation of genetic and evolutionary algorithms on Ising model problems gives much insight how these algorithms work as adaptation schemes. The Ising model on the ring has been considered as a typical example with a clear building block structure suited well for two-point crossover. It has been claimed that GAs based on recombination and appropriate diversity-preserving methods outperform by far EAs based only on mutation. Here, a rigorous analysis of the expected optimization time proves that mutation-based EAs are surprisingly effective. The (1+λ) EA with an appropriate λ-value is almost as efficient as usual GAs. Moreover, it is proved that specialized GAs do even better and this holds for two-point crossover as well as for one-point crossover.

Keywords

Ising model mutation vs. recombination expected optimization time fitness sharing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Culberson, J.: Genetic invariance: A new paradigm for genetic algorithm design. Technical Report 92–02, University of Alberta (1992)Google Scholar
  2. 2.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addision-Wesley, Reading (1989)MATHGoogle Scholar
  3. 3.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan, MI (1975)Google Scholar
  4. 4.
    Ising, E.: Beiträge zur Theorie des Ferromagnetismus. Z. Physik (31), 235–258 (1925)Google Scholar
  5. 5.
    Jansen, T., De Jong, K.: An analysis of the role of offspring population size in EAs. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2002), San Mateo, CA, pp. 238–246. Morgan Kaufmann, San Francisco (2002)Google Scholar
  6. 6.
    Jansen, T., De Jong, K., Wegener, I.: On the choice of the offspring population size in evolutionary algorithms. Submitted to Evolutionary Computation (2003)Google Scholar
  7. 7.
    Naudts, B., Naudts, J.: The effect of spin-flip symmetry on the performance of the simple GA. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 67–76. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Pelikan, M., Goldberg, D.E.: Hierarchical BOA solves Ising spin glasses and MAXSAT. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1271–1282. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Van Hoyweghen, C.: Symmetry in the Representation of an Optimization Problem. PhD thesis, Univ. Antwerpen (2002)Google Scholar
  10. 10.
    Van Hoyweghen, C., Goldberg, D.E., Naudts, B.: Building block superiority, multimodality and synchronization problems. Technical report, Illinois Genetic Algorithms Laboratory, IlliGAL Rep. No. 2001020 (2001)Google Scholar
  11. 11.
    Van Hoyweghen, C., Goldberg, D.E., Naudts, B.: From twomax to the Ising model: Easy and hard symmetrical problems. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2002), San Mateo, CA, pp. 626–633. Morgan Kaufmann, San Francisco (2002)Google Scholar
  12. 12.
    Van Hoyweghen, C., Naudts, B., Goldberg, D.E.: Spin-flip symmetry and synchronization. Evolutionary Computation (10), 317–344 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Simon Fischer
    • 1
  • Ingo Wegener
    • 1
  1. 1.FB Informatik, LS2Univ. DortmundDortmundGermany

Personalised recommendations