Formal Proof Sketches

  • Freek Wiedijk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3085)


Formalized mathematics currently does not look much like informal mathematics. Also, formalizing mathematics currently seems far too much work to be worth the time of the working mathematician. To address both of these problems we introduce the notion of a formal proof sketch. This is a proof representation that is in between a fully checkable formal proof and a statement without any proof at all. Although a formal proof sketch is too high level to be checkable by computer, it has a precise notion of correctness (hence the adjective formal).

We will show through examples that formal proof sketches can closely mimic already existing mathematical proofs. Therefore, although a formal proof sketch contains gaps in the reasoning from a formal point of view (which is why we call it a sketch), a mathematician probably would call such a text just a ‘proof’.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asperti, A., Wegner, B.: MOWGLI – A New Approach for the Content Description in Digital Documents. In: Proc. of the 9th Intl. Conference on Electronic Resources and the Social Role of Libraries in the Future, Autonomous Republic of Crimea, Ukraine, vol. 1 (2002)Google Scholar
  2. 2.
    Cairns, P., Gow, J.: A Theoretical Analysis of Hierarchical Proofs. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 175–187. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 4th edn. Clarendon Press, Oxford (1960)zbMATHGoogle Scholar
  4. 4.
    Harrison, J.: Optimizing Proof Search in Model Elimination. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 313–327. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Lamport, L.: How to Write a Proof. American Mathematical Monthly 102(7), 600–608 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Muzalewski, M.: An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels (1993),
  7. 7.
    Nederpelt, R.: Weak Type Theory, a formal language for mathematics. Technical Report 02-05, Eindhoven University of Technology, Department of Math. and Comp. Sc. (May 2002)Google Scholar
  8. 8.
    Sutcliffe, G., Suttner, C., Yemenis, T.: The TPTP problem library. In: Bundy, A. (ed.) Proc. 12th Conference on Automated Deduction CADE, Nancy/France, pp. 252–266. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Syme, D.: Three Tactic Theorem Proving. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 203–220. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Théry, L.: Formal Proof Authoring: an Experiment. In: Lüth, C., Aspinall, D. (eds.) UITP 2003, Rome, Technical Report No. 189, Institut für Informatik, Albert-Ludwigs Universität, Freiburg, September 2003, pp. 143–159 (2003)Google Scholar
  11. 11.
    Wenzel, M.: Isabelle/Isar — a versatile environment for human-readable formal proof documents. PhD thesis, Institut für Informatik, Technische Universität München (2002),
  12. 12.
    Wiedijk, F.: Mizar: An Impression (1999),
  13. 13.
    Wiedijk, F.: Formal proof sketches. In: Fokkink, W., van de Pol, J. (eds.) 7th Dutch Proof Tools Day, Program + Proceedings, Amsterdam (2003), CWI,

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Freek Wiedijk
    • 1
  1. 1.Department of Computer ScienceUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations