Advertisement

Elliptic Curves with a Given Number of Points

  • Reinier Bröker
  • Peter Stevenhagen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3076)

Abstract

We present a non-archimedean method to construct, given an integer N≥1, a finite field F q and an elliptic curve E/F q such that E(F q ) has order N.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bröker, R.: Thesis, Universiteit Leiden (in preparation)Google Scholar
  2. 2.
    Cohen, H.: A course in computational algebraic number theory. Graduate Texts in Mathematics 138 (1993)Google Scholar
  3. 3.
    Couveignes, J.-M., Henocq, T.: Action of modular correspondences around CM points. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 234–243. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Gee, A.: Class invariants by Shimura’s reciprocity law. Journal de Théorie des Nombres de Bordeaux 11, 45–72 (1999)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Kedlaya, K.: Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology. Journal Ramanujan Mathematical Society 16, 323–338 (2002)MathSciNetGoogle Scholar
  6. 6.
    Lang, S.: Elliptic functions, 2nd edn. Graduate Texts in Mathematics, vol. 112 (1987)Google Scholar
  7. 7.
    Satoh, T.: The canonical lift of an ordinary elliptic curve over a finite field and its point counting. Journal Ramanujan Mathematical Society 15, 247–270 (2000)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Schoof, R.: Elliptic Curves over Finite Fields and the Computation of Square Roots mod p. Mathematics of Computation 44, 483–494 (1985)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Schoof, R.: Counting points on elliptic curves over finite fields. Journal de Théorie des Nombres de Bordeaux 7, 219–254 (1995)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Stevenhagen, P.: Hilbert’s 12th problem, complex multiplication and Shimura reciprocity. Class field theory—its centenary and prospect (Tokyo, 1998) Adv. Stud. Pure Math., Math. Soc. Japan 30, 161–176 (2001)MathSciNetGoogle Scholar
  11. 11.
    Vélu, J.: Isogénies entre courbes elliptiques. C.R. Math. Acad. Sc. Paris 273, 238–241 (1971)zbMATHGoogle Scholar
  12. 12.
    Weber, H.: Lehrbuch der Algebra, Vol. III. Chelsea reprint, original edn. (1908)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Reinier Bröker
    • 1
  • Peter Stevenhagen
    • 1
  1. 1.Mathematisch InstituutUniversiteit LeidenLeidenThe Netherlands

Personalised recommendations