Implementing the Arithmetic of C3,4 Curves

  • Abdolali Basiri
  • Andreas Enge
  • Jean-Charles Faugère
  • Nicolas Gürel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3076)


We provide explicit formulae for realising the group law in Jacobians of superelliptic curves of genus 3 and C 3,4 curves. It is shown that two distinct elements in the Jacobian of a C 3,4 curve can be added with 150 multiplications and 2 inversions in the field of definition of the curve, while an element can be doubled with 174 multiplications and 2 inversions. In superelliptic curves, 10 multiplications are saved.


Great Common Divisor Hyperelliptic Curve Euclidian Algorithm Straight Line Program Jacobian Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arita, S.: Algorithms for computations in Jacobian group of Cab curve and their application to discrete-log based public key cryptosystems. IEICE Transactions J82-A(8), 1291–1299 (1999); In Japanese. English translation in the proceedings of the Conference on The Mathematics of Public Key Cryptography, Toronto (1999)Google Scholar
  2. 2.
    Basiri, A., Enge, A., Faugère, J.-C., Gürel, N.: The arithmetic of Jacobian groups of superelliptic cubics. Rapport de Recherche 4618, INRIA (November 2002), Available at (to appear in Mathematics of Computation)
  3. 3.
    Bauer, M.L.: The arithmetic of certain cubic function fields. Mathematics of Computation 73(245), 387–413 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cook, S.A.: On the Minimum Computation Time of Functions. PhD thesis, Harvard University (1966)Google Scholar
  5. 5.
    Enge, A.: Computing discrete logarithms in high-genus hyperelliptic Jacobians in provably subexponential time. Mathematics of Computation 71(238), 729–742 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Enge, A., Gaudry, P.: A general framework for subexponential discrete logarithm algorithms. Acta Arithmetica 102(1), 83–103 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Flon, S., Oyono, R.: Fast arithmetic on Jacobians of Picard curves. Cryptology ePrint Archive 2003/079 (2003) (Preprint), available at
  8. 8.
    Galbraith, S.D., Paulus, S.M., Smart, N.P.: Arithmetic on superelliptic curves. Mathematics of Computation 71(237), 393–405 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gaudry, P.: An algorithm for solving the discrete log problem on hyperelliptic curves. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 19–34. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Gaudry, P., Gürel, N.: An extension of Kedlaya’s point counting algorithm to superelliptic curves. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 480–494. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Hanrot, G., Zimmermann, P.: A long note on Mulders’ short product. Journal of Symbolic Computation 37(3), 391–401 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Harasawa, R., Suzuki, J.: Fast Jacobian group arithmetic on Cab curves. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 359–376. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Heß, F.: Computing Riemann–Roch spaces in algebraic function fields and related topics. Journal of Symbolic Computation 33(4), 425–445 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jebelean, T.: An algorithm for exact division. Journal of Symbolic Computation 15, 169–180 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Khuri-Makdisi, K.: Linear algebra algorithms for divisors on an algebraic curve. Mathematics of Computation 73(245), 333–357 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    карацуба, A., Офман, Ю.: Умноисенuе мноƨозначныx чuсеп на авmомаmаx Докла∂ы Ака∂емuu наук CCCP 145(2), 293–294 (1962), English translation: Multiplication of Multidigit Numbers on Automata. Soviet Physics – Doklady 7(7), 595–596 (1963) Google Scholar
  17. 17.
    Mulders, T.: On short multiplications and divisions. Applicable Algebra in Engineering. Communication and Computing 11, 69–88 (2000)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Pelzl, J., Wollinger, T., Guajardo, J., Paar, C.: Hyperelliptic curve crypstosystems: Closing the performance gap to elliptic curves. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 351–365. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Schönhage, A., Vetter, E.: A new approach to resultant computations and other algorithms with exact division. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 448–459. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  20. 20.
    Thériault, N.: Index calculus attack for hyperelliptic curves of small genus. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 75–92. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Toom, A.Л.: O сложности сxемы из функционалныx элементов реализирyющей yмножение целых чисел. Докла∂ы Ака∂емuu наук CCCP 150(3), 496–498 (1963), English translation: The complexity of a scheme of functional elements realizing the multiplication of integers. Soviet Mathematics 4, 714–716 (1963)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Abdolali Basiri
    • 1
    • 3
  • Andreas Enge
    • 2
  • Jean-Charles Faugère
    • 1
  • Nicolas Gürel
    • 2
  1. 1.Laboratoire d’Informatique de Paris 6 (CNRS/UMR 7606)Paris Cedex 05France
  2. 2.INRIA Futurs & Laboratoire d’Informatique (CNRS/FRE 2653)Palaiseau CedexFrance
  3. 3.Department of Mathematics and Computer SciencesDamghan University of SciencesDamghanIran

Personalised recommendations