Algorithmic Aspects of Cubic Function Fields

  • R. Scheidler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3076)


This paper presents an investigative account of arbitrary cubic function fields. We present an elementary classification of the signature of a cubic extension of a rational function field of finite characteristic at least five; the signature can be determined solely from the coefficients of the defining curve. We go on to study such extensions from an algorithmic perspective, presenting efficient arithmetic of reduced ideals in the maximal order as well as algorithms for computing the fundamental unit(s) and the regulator of the extension.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amrita, S.: Construction of secure Cab curves using modular curves. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 113–126. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Bauer, M.L.: The arithmetic of certain cubic function fields. Math. Comp. 73, 387–413 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Buchmann, J.A.: A generalization of Voronoi’s algorithm I, II. J. Number Theory 20, 177–209 (1985)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Delone, B.N., Fadeev, D.K.: The Theory of Irrationalities of the Third Degree. Transl. Math. Monographs 10, Amer. Math. Soc., Providence, Rhode Island (1964)Google Scholar
  5. 5.
    Galbraith, S.D., Paulus, S., Smart, N.P.: Arithmetic on superelliptic curves. Math. Comp. 71, 393–405 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lee, Y., Scheidler, R., Yarrish, C.: Computation of the fundamental units and the regulator of a cyclic cubic function field. Exper. Math. 12, 211–225 (2003)MATHMathSciNetGoogle Scholar
  7. 7.
    Lee, Y.: The unit rank classification of a general cubic function field by its discriminant (preprint)Google Scholar
  8. 8.
    Llorente, P., Nart, E.: Effective determination of the decomposition of the rational primes in a cuvic field. Proc. Amer. Math. Soc. 87, 579–585 (1983)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Rosen, M.: Number Theory in Function Fields. Springer, New York (2002)MATHGoogle Scholar
  10. 10.
    Scheidler, R.: Reduction in purely cubic function fields of unit rank one. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 515–532. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Scheidler, R.: Ideal arithmetic and infrastructure in purely cubic function fields. J. Thèorie Nombr. Bordeaux 13, 609–631 (2001)MATHMathSciNetGoogle Scholar
  12. 12.
    Scheidler, R., Stein, A.: Voronoi’s algorithm in purely cubic congruence function fields of unit rank 1. Math. Comp. 69, 1245–1266 (2000)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Schmidt, F.K.: Zahlentheorie in Körpern der Charakteristik p. Math. Zeitschr 33, 1–32 (1931)CrossRefGoogle Scholar
  14. 14.
    Voronoi, G.F.: On a Generalization of the Algorithm of Continued Fractions. Doctoral Dissertation, Warsaw (1896) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • R. Scheidler
    • 1
  1. 1.Department of Mathematics & StatisticsUniversity of CalgaryCalgaryCanada

Personalised recommendations