Computing Zeta Functions via p-Adic Cohomology

  • Kiran S. Kedlaya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3076)

Abstract

We survey some recent applications of p-adic cohomology to machine computation of zeta functions of algebraic varieties over finite fields of small characteristic, and suggest some new avenues for further exploration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.M., Huang, M.-D.: Counting rational points on curves and abelian varieties over finite fields. In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122, pp. 1–16. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Berger, L.: Représentations p-adiques et équations différentielles. Invent. Math. 148, 219–284 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berthelot, P.: Cohomologie cristalline des schémas de caractéristique p > 0. Lecture Notes in Math., vol. 407. Springer, Heidelberg (1974)MATHGoogle Scholar
  4. 4.
    Berthelot, P.: Géométrie rigide et cohomologie des variétés algébriques de caract éristique p, in Introductions aux cohomologies p-adiques (Luminy, 1984). Mém. Soc. Math. France 23, 7–32 (1986)MATHMathSciNetGoogle Scholar
  5. 5.
    Berthelot, P.: Finitude et pureté cohomologique en cohomologie rigide (with an appendix in English by A.J. de Jong). Invent. Math. 128, 329–377 (1997)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Candelas, P., de la Ossa, X., Rodriguez-Villegas, F.: Calabi-Yau manifolds over finite fields, I (preprint) (arXiv: hep-th/0012233)Google Scholar
  7. 7.
    Coleman, R., Iovita, A.: Revealing hidden structures (preprint), http://math.berkeley.edu/~coleman/
  8. 8.
    Deligne, P.: La conjecture de Weil. I. Publ. Math. IHES 43, 273–307 (1974)MathSciNetGoogle Scholar
  9. 9.
    Denef, J., Vercauteren, F.: An extension of Kedlaya’s algorithm to Artin-Schreier curves in characteristic 2. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 308–323. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Denef, J., Vercauteren, F.: An extension of Kedlaya’s algorithm to hyperelliptic curves in characteristic 2. J. Crypt. (to appear)Google Scholar
  11. 11.
    Denef, J., Vercauteren, F.: Computing zeta functions of Cab curves using Monsky-Washnitzer cohomology (2003) (preprint)Google Scholar
  12. 12.
    Dwork, B.: On the rationality of the zeta function of an algebraic variety. Amer. J. Math. 82, 631–648 (1960)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Elkik, R.: Solutions d’équations à coefficients dans un anneau hensélien. Ann. Sci. Éc. Norm. Sup. 6, 553–603 (1973)MATHMathSciNetGoogle Scholar
  14. 14.
    Freitag, E., Kiehl, R.: Étale cohomology and the Weil conjectures (translated by B.S. Waterhouse and W.C. Waterhouse). Ergebnisse der Math. 13, Springer (1998)Google Scholar
  15. 15.
    Gaudry, P., Gürel, N.: An extension of Kedlaya’s point-counting algorithm to superelliptic curves. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 480–494. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Gaudry, P., Gürel, N.: Counting points in medium characteristic using Kedlaya’s algorithm (preprint), http://www.inria.fr/rrrt/rr-4838.html
  17. 17.
    Gaudry, P., Harley, R.: Counting points on hyperelliptic curves over finite fields. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 313–332. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Gaudry, P., Schost, É.: Construction of secure random curves of genus 2 over prime fields. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 239–256. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar
  19. 19.
    Gerkmann, R.: The p-adic cohomology of varieties over finite fields and applications to the computation of zeta functions, thesis, Universität Duisberg-Essen (2003)Google Scholar
  20. 20.
    Gross, B.H.: A tameness criterion for Galois representations associated to modular forms (mod p). Duke Math. J. 61, 445–517 (1990)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Grothendieck, A.: On the de Rham cohomology of algebraic varieties. Publ. Math. IHES 29, 95–103 (1966)MathSciNetGoogle Scholar
  22. 22.
    Hartshorne, R.: On the De Rham cohomology of algebraic varieties. Publ. Math. IHES 45, 5–99 (1975)MATHMathSciNetGoogle Scholar
  23. 23.
    Kato, G.C., Lubkin, S.: Zeta matrices of elliptic curves. J. Number Theory 15, 318–330 (1982)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kedlaya, K.S.: Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology. J. Ramanujan Math. Soc. 16, 323–338 (2001); errata. ibid. 18, 417–418 (2003) MATHMathSciNetGoogle Scholar
  25. 25.
    Kedlaya, K.S.: Fourier transforms and p-adic “Weil II”, (preprint), http://math.mit.edu/~kedlaya/papers/
  26. 26.
    Kedlaya, K.S.: Quantum computation of zeta functions of curves (preprint), http://math.mit.edu/~kedlaya/papers/
  27. 27.
    Kohel, D.: The AGM-X0(N) Heegner point lifting algorithm and elliptic curve point counting. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 124–136. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
    Lauder, A.G.B.: Deformation theory and the computation of zeta functions. In: Proc. London Math. (to appear)Google Scholar
  29. 29.
    Lauder, A.G.B.: Counting solutions to equations in many variables over finite fields. In: Foundations of Comp. Math. (to appear)Google Scholar
  30. 30.
    Lauder, A.G.B., Wan, D.: Counting points on varieties over finite fields of small characteristic. In: Buhler, J.P., Stevenhagen, P. (eds.) Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, MSRI Publications, Cambridge Univ. Press,Google Scholar
  31. 31.
    Lauder, A.G.B., Wan, D.: Computing zeta functions of Artin-Schreier curves over finite fields. London Math. Soc. J. Comp. Math. 5, 34–55 (2002)MATHMathSciNetGoogle Scholar
  32. 32.
    Lauder, A.G.B., Wan, D.: Computing zeta functions of Artin-Schreier curves over finite fields II. J. Complexity (to appear)Google Scholar
  33. 33.
    Lercier, R., Lubicz, D.: email to the NMBRTHRY mailing list, December 5 (2002), http://listserv.nodak.edu/archives/nmbrthry.html
  34. 34.
    Mestre, J.-F.: Algorithmes pour compter des points en petite caractéristique en genre 1 et 2 (preprint), http://www.math.univ-rennes1.fr/crypto/2001-02/mestre.ps
  35. 35.
    Miura, S.: Error correcting codes based on algebraic curves, thesis, University of Tokyo (1997) (in Japanese)Google Scholar
  36. 36.
    Monsky, P.: Formal cohomology. II. The cohomology sequence of a pair. Ann. of Math. 88(2), 218–238 (1968)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Monsky, P.: Formal cohomology. III. Fixed point theorems. Ann. of Math. 93(2), 315–343 (1971)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Monsky, P., Washnitzer, G.: Formal cohomology. I. Ann. of Math. 88(2), 181–217 (1968)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Nijenhuis, A., Wilf, H.S.: Representations of integers by linear forms in nonnegative integers. J. Number Th. 4, 98–106 (1972)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Pila, J.: Frobenius maps of abelian varieties and finding roots of unity in finite fields. Math. Comp. 55, 745–763 (1990)MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Ritzenthaler, C.: Problèmes arithmétiques relatifs à certaines familles de courbes sur les corps finis, thesis, Université Paris 7 (2003), http://www.math.jussieu.fr/~ritzenth/
  42. 42.
    Ritzenthaler, C.: Point counting on genus 3 non hyperelliptic curves (preprint), http://www.math.jussieu.fr/~ritzenth/
  43. 43.
    Satoh, T.: The canonical lift of an ordinary elliptic curve over a finite field and its point counting. J. Ramanujan Math. Soc. 15, 247–270 (2000)MATHMathSciNetGoogle Scholar
  44. 44.
    Satoh, T.: On p-adic point counting algorithms for elliptic curves over finite fields. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 43–66. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  45. 45.
    Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp. 44, 483–494 (1985)MATHMathSciNetGoogle Scholar
  46. 46.
    Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. Math. 88(2), 492–517 (1968)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Suzuki, J.: An extension of Kedlaya’s order counting based on Miura theory (preprint)Google Scholar
  48. 48.
    Tsuzuki, N.: Bessel F-isocrystals and an algorithm of computing Kloosterman sums (preprint)Google Scholar
  49. 49.
    van der Put, M.: The cohomology of Monsky and Washnitzer, in Introductions aux cohomologies p-adiques (Luminy, 1984). Mém. Soc. Math. France 23, 33–59 (1986)MATHGoogle Scholar
  50. 50.
    Vercauteren, F.: Extensions of Kedlaya’s algorithm, notes from ECC 2002 talk (2002), http://www.cs.bris.ac.uk/~frederik/
  51. 51.
    Vercauteren, F.: Computing zeta functions of curves over finite fields, thesis, Katholieke Universiteit Leuven (2003), http://www.cs.bris.ac.uk/~frederik/
  52. 52.
    Walther, U.: Algorithmic determination of the rational cohomology of complex varieties via differential forms. In: Symbolic computation: solving equations in algebra, geometry, and engineering (South Hadley, MA, 2000), Contemp. Math., vol. 286, pp. 185–206. Amer. Math. Soc, Providence (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Kiran S. Kedlaya
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridge

Personalised recommendations