Multi-criterion Evolutionary Algorithm with Model of the Immune System to Handle Constraints for Task Assignments

  • Jerzy Balicki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3070)


In this paper, an evolutionary algorithm based on an immune system activity to handle constraints is discussed for three-criteria optimisation problem of finding a set of Pareto-suboptimal task assignments in parallel systems. This approach deals with a modified genetic algorithm cooperating with a main evolutionary algorithm. An immune system activity is emulated by a modified genetic algorithm to handle constraints. Some numerical results are submitted.


Genetic Algorithm Evolutionary Algorithm Multiobjective Optimisation Task Assignment Infeasible Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balicki, J., Kitowski, Z.: Multicriteria Evolutionary Algorithm with Tabu Search for Task Assignment. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 373–384. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Coello Coello, C.A., Cortes, N.C.: Use of Emulations of the Immune System to Handle Constraints in Evolutionary Algorithms, Knowledge and Information Systems. An International Journal 1, 1–12 (2001)Google Scholar
  3. 3.
    Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)zbMATHGoogle Scholar
  4. 4.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  5. 5.
    D’haeseleer, P., et al.: An Immunological Approach to Change Detection. In: Proc. of IEEE Symposium on Research in Security and Privacy, Oakland (1996)Google Scholar
  6. 6.
    Farmer, J.D., Packard, N.H., Perelson, A.S.: The Immune System, Adaptation, and Machine Learning. Physica D 22, 187–204 (1986)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Forrest, S., Perelson, A.S.: Genetic Algorithms and the Immune System. LNCS, pp. 320–325 (1991)Google Scholar
  8. 8.
    Helman, P., Forrest, S.: An Efficient Algorithm for Generating Random Antibody Strings. Technical Report CS-94-07, The University of New Mexico, Albuquerque (1994)Google Scholar
  9. 9.
    Jerne, N.K.: The Immune System. Scientific American 229(1), 52–60 (1973)CrossRefGoogle Scholar
  10. 10.
    Kim, J., Bentley, P.J.: Immune Memory in the Dynamic Clonal Selection Algorithm. In: Proc. of the First Int. Conf. on Artificial Immune Systems, Canterbury, pp. 57–65 (2002)Google Scholar
  11. 11.
    Koziel, S., Michalewicz, Z.: Evolutionary Algorithms, Homomorphous mapping, and Constrained Parameter Optimisation. Evolutionary Computation 7, 19–44 (1999)CrossRefGoogle Scholar
  12. 12.
    Smith, D.: Towards a Model of Associative Recall in Immunological Memory. Technical Report 94-9, University of New Mexico, Albuquerque (1994)Google Scholar
  13. 13.
    Weglarz, J. (ed.): Recent Advances in Project Scheduling. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  14. 14.
    Wierzchon, S.T.: Generating Optimal Repertoire of Antibody Strings in an Artificial Immune System. In: Klopotek, M., Michalewicz, M., Wierzchon, S.T. (eds.) Intelligent Information Systems, pp. 119–133. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jerzy Balicki
    • 1
  1. 1.Computer Science DepartmentThe Naval University of GdyniaGdyniaPoland

Personalised recommendations