A Statistical Approach for Algorithm Selection

  • Joaquín Pérez
  • Rodolfo A. Pazos
  • Juan Frausto
  • Guillermo Rodríguez
  • David Romero
  • Laura Cruz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3059)


This paper deals with heuristic algorithm characterization, which is applied to the solution of an NP-hard problem, in order to select the best algorithm for solving a given problem instance. The traditional approach for selecting algorithms compares their performance using an instance set, and concludes that one outperforms the other. Another common approach consists of developing mathematical models to relate performance to problem size. Recent approaches try to incorporate more characteristics. However, they do not identify the characteristics that affect performance in a critical way, and do not incorporate them explicitly in their performance model. In contrast, we propose a systematic procedure to create models that incorporate critical characteristics, aiming at the selection of the best algorithm for solving a given instance. To validate our approach we carried out experiments using an extensive test set. In particular, for the classical bin packing problem, we developed models that incorporate the interrelation among five critical characteristics and the performance of seven heuristic algorithms. As a result of applying our procedure, we obtained a 76% accuracy in the selection of the best algorithm.


Algorithm Selection Algorithm Performance Good Algorithm Problem Characteristic Pheromone Trail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, a Guide to the Theory of NP-completeness. W. H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  2. 2.
    Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization, Algorithms and Complexity. Prentice-Hall, New Jersey (1982)zbMATHGoogle Scholar
  3. 3.
    Bertsekas: Linear Network Optimization, Algorithms and Codes. MIT Press, Cambridge (1991)zbMATHGoogle Scholar
  4. 4.
    Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimizations. IEEE Transactions on Evolutionary Computation 1, 67–82 (1997)CrossRefGoogle Scholar
  5. 5.
    Pérez, J., Pazos, R.A., Fraire, H., Cruz, L., Pecero, J.: Adaptive Allocation of Data-Objects in the Web Using Neural Networks. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS, vol. 2829, pp. 154–164. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Borghetti, B.J.: Inference Algorithm Performance and Selection under Constrained Resources. MS Thesis. AFIT/GCS/ENG/96D-05 (1996)Google Scholar
  7. 7.
    Minton, S.: Automatically Configuring Constraint Satisfaction Programs: A Case Study. Journal of Constraints 1(1), 7–43 (1996)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fink, E.: How to Solve it Automatically, Selection among Problem-solving Methods. In: Proceedings of the Fourth International Conference on AI Planning Systems AIPS 1998, pp. 128–136 (1998)Google Scholar
  9. 9.
    Soares, C., Brazdil, P.: Zoomed Ranking, Selection of Classification Algorithms Based on Relevant Performance Information. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 126–135. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Rice, J.R.: On the Construction of Poly-algorithms for Automatic Numerical Analysis. In: Klerer, M., Reinfelds, J. (eds.) Interactive Systems for Experimental Applied Mathematics, pp. 301–313. Academic Press, London (1968)Google Scholar
  11. 11.
    Li, J., Skjellum, A., Falgout, R.D.: A Poly-Algorithm for Parallel Dense Matrix Multiplication on Two-Dimensional Process Grid Topologies. Concurrency, Practice and Experience 9(5), 345–389 (1997)CrossRefGoogle Scholar
  12. 12.
    Brewer, E.A.: High-Level Optimization Via Automated Statistical Modeling. In: Proceedings of Principles and Practice of Parallel Programming, pp. 80–91 (1995)Google Scholar
  13. 13.
    Basse, S.: Computer Algortihms, Introduction to Design and Analysis. Editorial Addison-Wesley Publishing Company, Reading (1998)Google Scholar
  14. 14.
    Coffman, E.G.: Jr., Garey, M.R., Johnson, D.S.: Approximation Algorithms for Bin-Packing, a Survey. In: Approximation Algorithms for NP-hard Problems, pp. 46–93. PWS, Boston (1997)Google Scholar
  15. 15.
    Coffman, J.E.G., Galambos, G., Martello, S., Vigo, D.: Bin Packing Approximation Algorithms; Combinatorial Analysis. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, Kluwer Academic Publishers, Boston (1998)Google Scholar
  16. 16.
    Lodi, A., Martello, S., Vigo, D.: Recent Advances on Two-dimensional Bin Packing Problems. Discrete Applied Mathematics 123(1-3), Elsevier Science B.V., Amsterdam (2002)Google Scholar
  17. 17.
    Ducatelle, F., Levine, J.: Ant Colony Optimisation for Bin Packing and Cutting Stock Problems. In: Proceedings of the UK Workshop on Computational Intelligence, Edinburgh (2001)Google Scholar
  18. 18.
    Pérez, J., Pazos, R.A., Vélez, L., Rodríguez, G.: Automatic Generation of Control Parameters for the Threshold Accepting Algorithm. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 119–127. Springer, Heidelberg (2002)Google Scholar
  19. 19.
    Micheals, R.J., Boult, T.E.: A Stratified Methodology for Classifier and Recognizer Evaluation. In: IEEE Workshop on Empirical Evaluation Methods in Computer Vision (2001)Google Scholar
  20. 20.
    Ross, P., Schulenburg, S., Marin-Blázquez, J.G., Hart, E.: Hyper-heuristics, Learning to Combine Simple Heuristics in Bin-packing Problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 942–948. Morgan Kaufmann, San Francisco (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Joaquín Pérez
    • 1
  • Rodolfo A. Pazos
    • 1
  • Juan Frausto
    • 2
  • Guillermo Rodríguez
    • 3
  • David Romero
    • 4
  • Laura Cruz
    • 5
  1. 1.Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)CuernavacaMexico
  2. 2.ITESMCuernavacaMexico
  3. 3.Instituto de Investigaciones EléctricasMexico
  4. 4.Instituto de Matemáticas, UNAMMexico
  5. 5.Instituto Tecnológico de Ciudad MaderoMexico

Personalised recommendations