Formal Approach and Automated Tool for Translating ER Schemata into OWL Ontologies

  • Zhuoming Xu
  • Xiao Cao
  • Yisheng Dong
  • Wenping Su
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3056)


Ontologies play a key role in creating machine-processable Web content to enable the Semantic Web. Extracting domain knowledge from database schemata can profitably support ontology development and then semantic markup of the instance data with the ontologies. The Entity-Relationship (ER) model is an industrial standard for conceptually modeling databases. This paper presents a formal approach and an automated tool for translating ER schemata into Web ontologies in the OWL Web Ontology Language. The tool can firstly read in an XML-coded ER schema produced with ER CASE tools such as PowerDesigner. Following the predefined knowledge-preserving mapping rules from ER schema to OWL DL (a sublanguage of OWL) ontology, it then automatically translates the schema into the ontology in both the abstract syntax and the RDF/XML syntax for OWL DL. Case studies show that the approach is feasible and the tool is efficient, even to large-scale ER schemata.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  2. 2.
    Beckett, D., Grant, J.: Mapping Semantic Web Data with RDBMSes. IST Project SWAD-Europe Deliverable 10.2, February 18 (2003), Online at
  3. 3.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  4. 4.
    Calvanese, D., Lenzerini, M., Nardi, D.: Unifying Class-based Representation Formalisms. Journal of Artificial Intelligence Research 11, 199–240 (1999)MATHMathSciNetGoogle Scholar
  5. 5.
    Dean, M., Schreiber, G. (eds.): OWL Web Ontology Language Reference. W3C Recommendation, February 10 (2004), Online at
  6. 6.
    Fensel, D., Pérez, A.G. (eds.): A Survey on Ontology Tools. IST Project OntoWeb Deliverable 1.3 (May 2002), Online at
  7. 7.
    Franconi, E., Ng, G.: The Tool for Intelligent Conceptual Modeling. In: Proc. of the 7th Int’l Workshop on Knowledge Representation Meets Databases. CEUR Electronic Workshop Proceedings, pp. 45–53 (2000), Online at
  8. 8.
    Gómez-Pérez, A., Manzano-Macho, D. (eds.): A Survey of Ontology Learning Methods and Techniques. IST Project OntoWeb Deliverable 1.5 (June 2003), Online at
  9. 9.
    Handschuh, S., Staab, S., Volz, R.: On Deep Annotation. In: Proc. of the 12th Int’l World Wide Web Conf., pp. 431–438. ACM Press, New York (2003)Google Scholar
  10. 10.
    Hori, M., Euzenat, J., Patel-Schneider, P.F.: OWL Web Ontology Language XML Presentation Syntax. W3C Note, June 11 (2003), Online at
  11. 11.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F., Zienberer, J.Y.: From SHIQ and RDF to OWL: The Making of a Web Ontology Language. Journal of Web Semantics 1(1) (December 2003), Online at
  12. 12.
    Maedche, A., Staab, S.: Ontology Learning for the Semantic Web. IEEE Intelligent Systems 16(2), 72–79 (2001)CrossRefGoogle Scholar
  13. 13.
    Patel-Schneider, P.F., Hayes, P., Horrocks, I. (eds.): OWL Web Ontology Language Semantics and Abstract Syntax. W3C Recommendation, February 10 (2004), Online at
  14. 14.
    Stojanovic, L., Stojanovic, N., Volz, R.: Migrating Data-intensive Web Sites into the Semantic Web. In: Proc. of the 17th ACM Symposium on Applied Computing, pp. 1100–1107. ACM Press, New York (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Zhuoming Xu
    • 1
    • 2
  • Xiao Cao
    • 2
  • Yisheng Dong
    • 1
  • Wenping Su
    • 2
  1. 1.Dept. of Computer Science & EngineeringSoutheast UniversityNanjingChina
  2. 2.College of Computers & Information EngineeringHohai UniversityNanjingChina

Personalised recommendations