Computational Quality of Service for Scientific Components

  • Boyana Norris
  • Jaideep Ray
  • Rob Armstrong
  • Lois C. McInnes
  • David E. Bernholdt
  • Wael R. Elwasif
  • Allen D. Malony
  • Sameer Shende
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3054)

Abstract

Scientific computing on massively parallel computers presents unique challenges to component-based software engineering (CBSE). While CBSE is at least as enabling for scientific computing as it is for other arenas, the requirements are different. We briefly discuss how these requirements shape the Common Component Architecture, and we describe some recent research on quality-of-service issues to address the computational performance and accuracy of scientific simulations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keahey, K., Beckman, P., Ahrens, J.: Ligature: Component architecture for high performance applications. The International Journal of High Performance Computing Applications 14, 347–356 (2000)CrossRefGoogle Scholar
  2. 2.
    Pérez, C., Priol, T., Ribes, A.: A parallel CORBA component model for numerical code coupling. International Journal of High Performance Computing Applications (IJHPCA) 17 (2003)Google Scholar
  3. 3.
    Allen, G., Benger, W., Goodale, T., Hege, H.C., Lanfermann, G., Merzky, A., Radke, T., Seidel, E., Shalf, J.: The Cactus code:A problem solving environment for the Grid. In: High Performance Distributed Computing (HPDC), pp. 253–260. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  4. 4.
    Anonymous: Earth System Modeling Framework, ESMF (2004), http://sdcd.gsfc.nasa.gov/ESS/esmf_tasc/
  5. 5.
    Guilyardi, E., Budich, R.G., Valcke, S.: PRISM and ENES: European Approaches to Earth System Modelling. In: Proceedings of Realizing TeraComputing - Tenth Workshop on the Use of High Performance Computing in Meteorology (2002)Google Scholar
  6. 6.
    Common Component Architecture Forum: Common Component Architecture, CCA (2004), http://www.cca-forum.org
  7. 7.
    D.E.B., et al.: A component architecture for high-performance scientific computing. Intl. J. High Perf. Comp. Appl. (submitted to ACTS Collection special issue) Google Scholar
  8. 8.
    Bernholdt, D.E., Elwasif, W.R., Kohl, J.A., Epperly, T.G.W.: A component architecture for high-performance computing. In: Proceedings of theWorkshop on Performance Optimization via High-Level Languages (POHLL 2002), NewYork, NY (2002)Google Scholar
  9. 9.
    Forum, M.P.I.: MPI: a message-passing interface standard. International Journal of Supercomputer Applications and High Performance Computing 8, 159–416 (1994)Google Scholar
  10. 10.
    Bernholdt, D.E., Armstrong, R.C., Allan, B.A.: Managing complexity in modern high end scientific computing through component-based software engineering. In: Proc. of HPCA Workshop on Productivity and Performance in High-End Computing (P-PHEC 2004), Madrid, Spain, IEEE Computer Society, Los Alamitos (2004)Google Scholar
  11. 11.
    Hovland, P., Keahey, K., McInnes, L.C., Norris, B., Diachin, L.F., Raghavan, P.: A quality of service approach for high-performance numerical components. In: Proceedings ofWorkshop on QoS in Component-Based Software Engineering, Software Technologies Conference, Toulouse, France (2003)Google Scholar
  12. 12.
    Shende, S., Malony, A.D., Rasmussen, C., Sottile, M.: A Performance Interface for Component-Based Applications. In: Proceedings of InternationalWorkshop on Performance Modeling, Evaluation and Optimization, International Parallel and Distributed Processing Symposium (2003)Google Scholar
  13. 13.
    Ray, J., Trebon, N., Shende, S., Armstrong, R.C., Malony, A.: Performance measurement and modeling of component applications in a high performance computing environment: A case study. Technical Report SAND2003-8631, Sandia National Laboratories, Accepted, 18th International Parallel and Distributed Computing Symposium, Santa Fe, NM (2003)Google Scholar
  14. 14.
    McInnes, L., Norris, B., Bhowmick, S., Raghavan, P.: Adaptive sparse linear solvers for implicit CFD using Newton-Krylov algorithms. In: Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics (2003)Google Scholar
  15. 15.
    Larson, J., Norris, B., Ong, E., Bernholdt, D., Drake, J., Elwasif, W., Ham, M., Rasmussen, C., Kumfert, G., Katz, D., Zhou, S., DeLuca, C., Collins, N.: Components, the common component architecture, and the climate/weather/ocean community. Submitted to AMS 2004 (2003)Google Scholar
  16. 16.
    Lefantzi, S., Ray, J.: A component-based scientific toolkit for reacting flows. In: Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, Elsevier Science, Boston (2003)Google Scholar
  17. 17.
    Benson, S., Krishnan, M., McInnes, L., Nieplocha, J., Sarich, J.: Using the GA and TAO toolkits for solving large-scale optimization problems on parallel computers. Technical Report ANL/MCS-P1084-0903, Argonne National Laboratory (2003); submitted to ACM Transactions on Mathematical SoftwareGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Boyana Norris
    • 1
  • Jaideep Ray
    • 2
  • Rob Armstrong
    • 2
  • Lois C. McInnes
    • 1
  • David E. Bernholdt
    • 3
  • Wael R. Elwasif
    • 3
  • Allen D. Malony
    • 4
  • Sameer Shende
    • 4
  1. 1.Argonne National LaboratoryArgonneUSA
  2. 2.Sandia National LaboratoriesLivermoreUSA
  3. 3.Oak Ridge National LaboratoryOak RidgeUSA
  4. 4.University of OregonEugeneUSA

Personalised recommendations