Self-Tuning Mechanism for Genetic Algorithms Parameters, an Application to Data-Object Allocation in the Web

  • Joaquín Pérez
  • Rodolfo A. Pazos
  • Juan Frausto
  • Guillermo Rodríguez
  • Laura Cruz
  • Graciela Mora
  • Héctor Fraire
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3046)

Abstract

In this paper, a new mechanism for automatically obtaining some control parameter values for Genetic Algorithms is presented, which is independent of problem domain and size. This approach differs from the traditional methods which require knowing first the problem domain, and then knowing how to select the parameter values for solving specific problem instances. The proposed method is based on a sample of problem instances, whose solution permits to characterize the problem and to obtain the parameter values.To test the method, a combinatorial optimization model for data-objects allocation in the Web (known as DFAR) was solved using Genetic Algorithms. We show how the proposed mechanism permits to develop a set of mathematical expressions that relates the problem instance size to the control parameters of the algorithm. The experimental results show that the self-tuning of control parameter values of the Genetic Algorithm for a given instance is possible, and that this mechanism yields satisfactory results in quality and execution time. We consider that the proposed method principles can be extended for the self-tuning of control parameters for other heuristic algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fogel, D., Ghozeil, A.: Using Fitness Distributions to Design More Efficient Evolutionary Computations. In: Proceedings of the 1996 IEEE Conference on Evolutionary Computation, Nagoya, Japan, pp. 11–19. IEEE Press, Piscataway (1996)CrossRefGoogle Scholar
  2. 2.
    Pérez, J., Pazos, R.A., Velez, L., Rodriguez, G.: Automatic Generation of Control Parameters for the Threshold Accepting Algorithm. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 119–127. Springer, Heidelberg (2002)Google Scholar
  3. 3.
    Back, T., Schwefel, H.P.: Evolution Strategies I: Variants and their computational implementation. In: Winter, G., Périaux, J., Galán, M., Cuesta, P. (eds.) Genetic Algorithms in Engineering and Computer Science. ch. 6, pp. 111–126. John Wiley and Sons, Chichester (1995)Google Scholar
  4. 4.
    Mercer, R.E., Sampson, J.R.: Adaptive Search Using a Reproductive Meta-plan. Kybernets 7, 215–228 (1978)CrossRefGoogle Scholar
  5. 5.
    Grefenstette, J.J.: Optimization of Control Parameters for Genetic Algorithms. In: Sage, A.P. (ed.) IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-16(1), pp. 122–128. IEEE, New York (1986)Google Scholar
  6. 6.
    Smith, R.E., Smuda, E.: Adaptively Resizing Population: Algorithm Analysis and First Results. Complex Systems 9, 47–72 (1995)Google Scholar
  7. 7.
    Harik, G.R., Lobo, F.G.: A parameter-less Genetic Algorithm. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 1999, pp. 258–267. Morgan Kaufmann, San Francisco (1999)Google Scholar
  8. 8.
    Pérez, J., Pazos, R.A., Romero, D., Santaolaya, R., Rodríguez, G., Sosa, V.: Adaptive and Scalable Allocation of Data-Objects in the Web. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 134–143. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Joaquín Pérez
    • 1
  • Rodolfo A. Pazos
    • 1
  • Juan Frausto
    • 2
  • Guillermo Rodríguez
    • 3
  • Laura Cruz
    • 4
  • Graciela Mora
    • 4
  • Héctor Fraire
    • 4
  1. 1.Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)CuernavacaMéxico
  2. 2.ITESMCampus Cuernavaca, MéxicoCuernavacaMéxico
  3. 3.Instituto de Investigaciones Eléctricas, IIE 
  4. 4.Instituto Tecnológico de Ciudad MaderoMéxico

Personalised recommendations