Advertisement

Reverse Subdivision Multiresolution for Polygonal Silhouette Error Correction

  • Kevin Foster
  • Mario Costa Sousa
  • Faramarz F. Samavati
  • Brian Wyvill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3045)

Abstract

This paper presents a method for automatic removal of artifacts that appear in silhouettes extracted from polygonal meshes due to the discrete nature of meshes and numerical instabilities. The approach works in object space on curves made by chaining silhouette edges and uses multiresolution techniques based on a reverse subdivision method. These artifact-free curves are then rendered in object-space as weighted 3D triangle-ribbon strips.

Keywords

Global Method Large Mesh Polygonal Mesh Original Mesh Detailed Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartels, R.H., Samavati, F.F.: Multiresolution curve and surface representation by reversing subdivision rules. Computer Graphics Forum 18(2), 97–120 (2000)Google Scholar
  2. 2.
    Buchanan, J.W., Sousa, M.C.: The edge buffer: A data structure for easy silhouette rendering. In: Proc. of NPAR 2000, pp. 39–42 (2000)Google Scholar
  3. 3.
    Correa, W.T., Jensen, R.J., Thayer, C.E., Finkelstein, A.: Texture mapping for cel animation. In: Proc. of SIGGRAPH 1998, pp. 435–446 (1998)Google Scholar
  4. 4.
    DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for conveying shape. In: Proc. of SIGGRAPH 2003, pp. 848–855 (2003)Google Scholar
  5. 5.
    Finkelstein, A., Salesin, D.H.: Multiresolution curves. In: Proc. of SIGGRAPH 1994, pp. 261–268 (1994)Google Scholar
  6. 6.
    Gooch, B., Sloan, P.J., Gooch, A., Shirley, P., Riesenfeld, R.: Interactive technical illustration. In: 1999 ACM Symposium on Interactive 3D Graphics, pp. 31–38 (1999)Google Scholar
  7. 7.
    Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. In: Proc. of SIGGRAPH 2000, pp. 517–526 (2000)Google Scholar
  8. 8.
    Isenberg, T., Halper, N., Strothotte, T.: Stylizing silhouettes at interactive rates: From silhouette edges to silhouette strokes. In: Proc. of Eurographics (2002)Google Scholar
  9. 9.
    Kalnins, R.D., Davidson, P.L., Markosian, L., Finkelstein, A.: Coherent stylized silhouettes. In: Proc. of SIGGRAPH 2003, pp. 856–861 (2003)Google Scholar
  10. 10.
    Kirsanov, D., Sander, P.V., Gortler, S.J.: Simple silhouettes over complex surfaces. In: Proc. of Symposium on Geometry Processing (2003)Google Scholar
  11. 11.
    Markosian, L., Kowalski, M.A., Trychin, S.J., Bourdev, L.D., Goldstein, D., Hughes, J.F.: Real-time nonphotorealistic rendering. In: Proc. of SIGGRAPH 1997, pp. 415–420 (1997)Google Scholar
  12. 12.
    Northrup, J.D., Markosian, L.: Artistic silhouettes: A hybrid approach. In: Proc. of NPAR 2000 (2000)Google Scholar
  13. 13.
    Samavati, F.F., Bartels, R.H.: Multiresolution curve and surface representation by reversing subdivision rules. Computer Graphics Forum 18(2), 97–120 (1999)CrossRefGoogle Scholar
  14. 14.
    Sandler, P.V., Gu, X., Gortler, S.J., Hoppe, H., Snyder, J.: Silhouette clipping. In: Proc. of SIGGRAPH 2000, pp. 327–334 (2000)Google Scholar
  15. 15.
    Sousa, M.C., Prusinkiewicz, P.: A few good lines: Suggestive drawing of 3D models. In: Proc. of Eurographics 2003, pp. 327–340 (2003)Google Scholar
  16. 16.
    Stollnitz, E.J., Derose, T.D., Salesin, D.H.: Wavelets for computer graphics: Theory and applications. Morgan Kaufmann, San Francisco (1996)Google Scholar
  17. 17.
    van Overveld, C., Wyvill, B.: Phong normal interpolation revisted. ACM Transactions on Graphics 16(4), 397–419 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Kevin Foster
    • 1
  • Mario Costa Sousa
    • 1
  • Faramarz F. Samavati
    • 1
  • Brian Wyvill
    • 1
  1. 1.Department of Computer ScienceUniversity of CalgaryCalgaryCanada

Personalised recommendations