A Lower Bound on the Competitive Ratio of Truthful Auctions

  • Andrew V. Goldberg
  • Jason D. Hartline
  • Anna R. Karlin
  • Michael Saks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2996)


We study a class of single-round, sealed-bid auctions for a set of identical items. We adopt the worst case competitive framework defined by [6,3] that compares the profit of an auction to that of an optimal single price sale to at least two bidders. In this framework, we give a lower bound of 2.42 (an improvement from the bound of 2 given in [3]) on the competitive ratio of any truthful auction, one where each bidders best strategy is to declare the true maximum value an item is worth to them. This result contrasts with the 3.39 competitive ratio of the best known truthful auction [4].


Competitive Ratio Bidder Auction Unlimited Supply Vickrey Auction Optimal Auction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abel, N.: Beweis eines Ausdrucks von welchem die Binomial-Formel ein einzelner Fall ist. Crelles Journal für die Reine und Angewandte Mathematik 1, 159–160 (1826)Google Scholar
  2. 2.
    Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: Proc. of the 42nd IEEE Symposium on Foundations of Computer Science (2001)Google Scholar
  3. 3.
    Fiat, A., Goldberg, A., Hartline, J., Karlin, A.: Competitive Generalized Auctions. In: Proc. 34th ACM Symposium on the Theory of Computing, ACM Press, New York (2002)Google Scholar
  4. 4.
    Goldberg, A., Hartline, J.: Competitiveness via Concensus. In: Proc. 14th Symp. on Discrete Algorithms. ACM/SIAM (2003)Google Scholar
  5. 5.
    Goldberg, A., Hartline, J., Karlin, A., Saks, M., Wright, A.: Competitive auctions and digital goods. Games and Economic Behavior (2002); submitted for publication. An earlier version available as InterTrust Technical Report STARTR- 99.09.01Google Scholar
  6. 6.
    Goldberg, A., Hartline, J., Wright, A.: Competitive Auctions and Digital Goods. In: Proc. 12th Symp. on Discrete Algorithms, pp. 735–744. ACM/SIAM (2001)Google Scholar
  7. 7.
    Lehmann, D., O’Callaghan, L., Shoham, Y.: Truth Revelation in Approximately Efficient Combinatorial Auctions. In: Proc. of 1st ACM Conf. on E-Commerce, pp. 96–102. ACM Press, New York (1999)CrossRefGoogle Scholar
  8. 8.
    Mirrlees, J.: An Exploration into the Theory of Optimal Income Taxation. Review of Economics Studies 38, 175–208 (1971)zbMATHCrossRefGoogle Scholar
  9. 9.
    Nisan, N., Ronen, A.: Algorithmic Mechanism Design. In: Proc. of 31st Symposium on Theory of Computing, pp. 129–140. ACM Press, New York (1999)Google Scholar
  10. 10.
    Segal, I.: Optimal Pricing Mechanism with Unknown Demand. American Economic Review 93, 509–529 (2003)CrossRefGoogle Scholar
  11. 11.
    Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Tenders. Journal of Finance 16, 8–37 (1961)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Andrew V. Goldberg
    • 1
  • Jason D. Hartline
    • 1
  • Anna R. Karlin
    • 2
  • Michael Saks
    • 3
  1. 1.Microsoft ResearchMountain ViewUSA
  2. 2.Computer Science DepartmentUniversity of Washington 
  3. 3.Department of Mathematics–Hill CenterRutgers UniversityPiscatawayUSA

Personalised recommendations