The Syntactic Graph of a Sofic Shift

  • Marie-Pierre Béal
  • Francesca Fiorenzi
  • Dominique Perrin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2996)


We define a new invariant for the conjugacy of irreducible sofic shifts. This invariant, that we call the syntactic graph of a sofic shift, is the directed acyclic graph of characteristic groups of the non null regular \(\mathcal{D}\)-classes of the syntactic semigroup of the shift.


Automata and formal languages symbolic dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Béal, M.-P.: Codage Symbolique, Masson (1993)Google Scholar
  2. 2.
    Béal, M.-P.: Puissance extérieure d’un automate déterministe, application au calcul de la fonction zêta d’un système sofique. RAIRO Inform. Théor. Appl. 29, 85–103 (1995)MATHMathSciNetGoogle Scholar
  3. 3.
    Béal, M.-P., Fiorenzi, F., Mignosi, F.: Minimal forbidden patterns of multidimensional shifts. To appear in Internat. J. Algebra Comput. (2003)Google Scholar
  4. 4.
    Beauquier, D.: Minimal automaton for a factorial transitive rational language. Theoret. Comput. Sci. 67, 65–73 (1989)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Berstel, J., Perrin, D.: Theory of Codes. Academic Press, New York (1985)MATHGoogle Scholar
  6. 6.
    Boyle, M.: Algebraic aspects of symbolic dynamics. In: Graph Reduction 1986. London Math. Soc. Lecture Notes Ser, vol. 279, pp. 57–88. Cambridge University Press, Cambridge (2000)Google Scholar
  7. 7.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory 3, 320–337 (1969)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Jonoska, N.: A conjugacy invariant for reducible sofic shifts and its semigroup characterizations. Israel J. Math. 106, 221–249 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kitchens, B.P.: Symbolic Dynamics: one-sided, two-sided and countable state Markov shifts. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Krieger, W.: On sofic systems. I. Israel J. Math. 48, 305–330 (1984)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Krieger, W.: On sofic systems. II. Israel J. Math. 60, 167–176 (1987)Google Scholar
  12. 12.
    Krieger, W.: On a syntactically defined invariant of symbolic dynamics. Ergodic Theory Dynam. Systems 20, 501–516 (2000)Google Scholar
  13. 13.
    Lind, D.A., Marcus, B.H.: An Introduction to Symbolic Dynamics and Coding, Cambridge (1995)Google Scholar
  14. 14.
    Luca, A.D., Restivo, A.: A characterization of strictly locally testable languages and its applications to subsemigroups of a free semigroup. Inform. and Control 44(80), 300–319Google Scholar
  15. 15.
    Nasu, M.: Topological conjugacy for sofic systems. Ergodic Theory Dynam. Systems 6, 265–280 (1986)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pin, J.-E.: Varieties of formal languages, Foundations of Computer Science. Plenum Publishing Corp., New York (1986)Google Scholar
  17. 17.
    Weiss, B.: Subshifts of finite type and sofic systems. Monats. für Math. 77, 462–474 (1973)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Marie-Pierre Béal
    • 1
  • Francesca Fiorenzi
    • 1
  • Dominique Perrin
    • 1
  1. 1.Institut Gaspard-MongeUniversité de Marne-la-ValléeMarne-la-Vallée Cedex 2France

Personalised recommendations