Advertisement

Safety Verification of Hybrid Systems Using Barrier Certificates

  • Stephen Prajna
  • Ali Jadbabaie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2993)

Abstract

This paper presents a novel methodology for safety verification of hybrid systems. For proving that all trajectories of a hybrid system do not enter an unsafe region, the proposed method uses a function of state termed a barrier certificate. The zero level set of a barrier certificate separates the unsafe region from all possible trajectories starting from a given set of initial conditions, hence providing an exact proof of system safety. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes nonlinearity, uncertainty, and constraints can be handled directly within this framework. The method is also computationally tractable, since barrier certificates can be constructed using the sum of squares decomposition and semidefinite programming. Some examples are provided to illustrate the use of the method.

Keywords

Hybrid System Continuous State Discrete Transition Reachability Analysis Integral Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Oliviero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Dang, T., Ivancic, F.: Progress on reachability analysis of hybrid systems using predicate abstraction. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 4–19. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 63–76. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bemporad, A., Torrisi, F.D., Morari, M.: Optimization-based verification and stability characterization of piecewise affine and hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 45–58. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 73–88. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)zbMATHGoogle Scholar
  8. 8.
    Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Automatic Control 43(4), 475–482 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE Trans. Automatic Control 48(1), 64–75 (2003)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Clarke, E.M., Kurshan, R.P.: Computer-aided verification. IEEE Spectrum 33(6), 61–67 (1996)CrossRefGoogle Scholar
  11. 11.
    Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Automat. Control 43(4), 555–559 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall, Inc., Upper Saddle River (1996)Google Scholar
  13. 13.
    Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 203–213. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computations for families of linear vector fields. J. Symbolic Computation 32(3), 231–253 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Megretski, A., Rantzer, A.: System analysis via integral quadratic constraints. IEEE Trans. Automatic Control 42(6), 819–830 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Murray, R.M. (ed.): Control in an Information Rich World: Report of the Panel on Future Directions in Control, Dynamics, and Systems. SIAM, Philadelphia (2003), Available at http://www.cds.caltech.edu/~murray/cdspanel zbMATHGoogle Scholar
  17. 17.
    Papachristodoulou, A., Prajna, S.: On the construction of Lyapunov functions using the sum of squares decomposition. In: Proceedings IEEE CDC (2002)Google Scholar
  18. 18.
    Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. PhD thesis, Caltech, Pasadena, CA (2000)Google Scholar
  19. 19.
    Prajna, S.: Barrier certificates for nonlinear model validation. In: Proceedings IEEE Conference on Decision and Control (2003)Google Scholar
  20. 20.
    Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Introducing SOSTOOLS: A general purpose sum of squares programming solver. In: Proceedings IEEE CDC (2002), Available at http://www.cds.caltech.edu/sostools and http://www.aut.ee.ethz.ch/~parrilo/sostools
  21. 21.
    Shor, N.Z.: Class of global minimum bounds of polynomial functions. Cybernetics 23(6), 731–734 (1987)zbMATHCrossRefGoogle Scholar
  22. 22.
    Tiwari, A.: Approximate reachability for linear systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 514–525. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Tomlin, C.J., Mitchell, I., Bayen, A.M., Oishi, M.: Computational techniques for the verification of hybrid systems. Proc. of the IEEE 91(7), 986–1001 (2003)CrossRefGoogle Scholar
  24. 24.
    Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38(1), 49–95 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Yazarel, H., Pappas, G.: Geometric programming relaxations for linear systems reachability. Submitted to the American Control Conference (2004)Google Scholar
  26. 26.
    Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice-Hall, Inc., Upper Saddle River (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Stephen Prajna
    • 1
  • Ali Jadbabaie
    • 2
  1. 1.Control and Dynamical SystemsCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of Electrical and Systems EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations