Advertisement

Modeling Subtilin Production in Bacillus subtilis Using Stochastic Hybrid Systems

  • Jianghai Hu
  • Wei-Chung Wu
  • Shankar Sastry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2993)

Abstract

The genetic network regulating the biosynthesis of subtilin in Bacillus subtilis is modeled as a stochastic hybrid system. The continuous state of the hybrid system is the concentrations of subtilin and various regulating proteins, whose productions are controlled by switches in the genetic network that are in turn modeled as Markov chains. Some preliminary results are given by both analysis and simulations.

Keywords

Markov Chain Bacillus Subtilis Hybrid System Continuous State Equilibrium Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amonlirdviman, K., Ghosh, R., Axelrod, J.D., Tomlin, C.: A hybrid systems approach to modeling and analyzing planar cell polarity. In: Proc. 3rd Int. Conf. on Systems Biology, Stockholm, Sweden (December 2002)Google Scholar
  2. 2.
    Banerjee, S., Hansen, J.N.: Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem. 263(19), 9508–9514 (1988)Google Scholar
  3. 3.
    Bujorianu, M.L., Lygeros, J.: Reachability questions in piecewise deterministic markov processes. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 126–140. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Cipra, B.A.: An introduction to the Ising model. Amer. Math. Monthly 94, 937–959 (1987)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Durrett, R.: Probability: Theory and Examples, 2nd edn. Duxbury Press, Boston (1996)Google Scholar
  6. 6.
    Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)CrossRefGoogle Scholar
  7. 7.
    Entian, K.D., de Vos, W.M.: Genetics of subtilin and nisin biosyntheses: biosynthesis of lantibiotics. Antonie van Leeuwenhoek 69, 109–117 (1996)CrossRefGoogle Scholar
  8. 8.
    Ghosh, R., Tomlin, C.: Lateral inhibition through delta-notch signaling: A piecewise affine hybrid model. In: di Benedetto, M.D., Sangiovanni- Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 232–246. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. of Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  10. 10.
    Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 160–173. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Kiesau, P., Eikmanns, U., Eckel, Z.G., Weber, S., Hammelmann, M., Entian, K.D.: Evidence for a multimeric subtilin synthetase complex. J. of Bacteriology 179(5), 1475–1481 (1997)Google Scholar
  12. 12.
    Kleerebezem, M., Quadri, L.E.: Peptide pheromone-dependent regulation of antimicrobial peptide production in gram-positive bacteria: a case of multicellular behavior. Peptides 22, 1579–1596 (2001)CrossRefGoogle Scholar
  13. 13.
    McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. 94, 814–819 (1997)CrossRefGoogle Scholar
  14. 14.
    McAdams, H.H., Arkin, A.: It’s a noisy bussiness! genetic regulation at the nanomolar scale. TIG 15(2), 65–69 (1999)CrossRefGoogle Scholar
  15. 15.
    Msadek, T.: When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis. Trends in Microbiology 7(5), 201–207 (1999)CrossRefGoogle Scholar
  16. 16.
    Ozbudak, E.M., Thattai, M., Kurtser, I., Grossman, A.D., van Oudenaarden, A.: Regulation of noise in the expression of a single gene. Nature Genetics 31, 69–73 (2002)CrossRefGoogle Scholar
  17. 17.
    Rao, C.V., Wolf, D.M., Arkin, A.P.: Control, exploitation and tolerance of intracellular noise. Nature 402, 231–237 (2002)CrossRefGoogle Scholar
  18. 18.
    Shea, M.A., Ackers, G.K.: The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation. J. Mol. Biol. 181, 211–230 (1985)CrossRefGoogle Scholar
  19. 19.
    Stein, T., Borchert, S., Kiesau, P., Heinzmann, S., Kloss, S., Klein, C., Helfrich, M., Entian, K.D.: Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Molecular Microbiology 44(2), 403–416 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jianghai Hu
    • 1
  • Wei-Chung Wu
    • 1
  • Shankar Sastry
    • 1
  1. 1.Department of Electrical Engineering and Computer SciencesUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations