Computing and Handling Cardinal Direction Information

  • Spiros Skiadopoulos
  • Christos Giannoukos
  • Panos Vassiliadis
  • Timos Sellis
  • Manolis Koubarakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2992)

Abstract

Qualitative spatial reasoning forms an important part of the commonsense reasoning required for building intelligent Geographical Information Systems (GIS). Previous research has come up with models to capture cardinal direction relations for typical GIS data. In this paper, we target the problem of efficiently computing the cardinal direction relations between regions that are composed of sets of polygons and present the first two algorithms for this task. The first of the proposed algorithms is purely qualitative and computes, in linear time, the cardinal direction relations between the input regions. The second has a quantitative aspect and computes, also in linear time, the cardinal direction relations with percentages between the input regions. The algorithms have been implemented and embedded in an actual system, CarDirect, that allows the user to annotate regions of interest in an image or a map, compute cardinal direction relations and retrieve combinations of interesting regions on the basis of a query.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clementini, E., Di Fellice, P., Califano, G.: Composite Regions in Topological Queries. Information Systems 7, 579–594 (1995)CrossRefGoogle Scholar
  2. 2.
    Egenhofer, M.J.: Reasoning about Binary Topological Relationships. In: Günther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 143–160. Springer, Heidelberg (1991)Google Scholar
  3. 3.
    Frank, A.U.: Qualitative Spatial Reasoning about Distances and Directions in Geographic Space. Journal of Visual Languages and Computing 3, 343–371 (1992)CrossRefGoogle Scholar
  4. 4.
    Frank, A.U.: Qualitative Spatial Reasoning: Cardinal Directions as an Example. International Journal of GIS 10(3), 269–290 (1996)Google Scholar
  5. 5.
    Goyal, R., Egenhofer, M.J.: The Direction-Relation Matrix: A Representation for Directions Relations Between Extended Spatial Objects. In: The annual assembly and the summer retreat of University Consortium for Geographic Information Systems Science (June 1997)Google Scholar
  6. 6.
    Goyal, R., Egenhofer, M.J.: Cardinal Directions Between Extended Spatial Objects. IEEE Transactions on Data and Knowledge Engineering (2000) (in press), Available at http://www.spatial.maine.edu/~max/RJ36.html
  7. 7.
    Liang, Y.-D., Barsky, B.A.: A New Concept and Method for Line Clipping. ACM Transactions on Graphics 3(1), 868–877 (1984)Google Scholar
  8. 8.
    Ligozat, G.: Reasoning about Cardinal Directions. Journal of Visual Languages and Computing 9, 23–44 (1998)CrossRefGoogle Scholar
  9. 9.
    Lipschutz, S.: Set Theory and Related Topics. McGraw-Hill, New York (1998)Google Scholar
  10. 10.
    Maillot, P.-G.: A New, Fast Method For 2D Polygon Clipping: Analysis and Software Implementation. ACM Transactions on Graphics 11(3), 276–290 (1992)MATHCrossRefGoogle Scholar
  11. 11.
    Mukerjee, A., Joe, G.: A Qualitative Model for Space. In: Proceedings of AAAI 1990, pp. 721–727 (1990)Google Scholar
  12. 12.
    O’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge (1994)MATHGoogle Scholar
  13. 13.
    Papadias, D., Theodoridis, Y., Sellis, T., Egenhofer, M.J.: Topological Relations in the World of Minimum Bounding Rectangles: A Study with R-trees. In: Proceedings of ACM SIGMOD 1995, pp. 92–103 (1995)Google Scholar
  14. 14.
    Papadimitriou, C.H., Suciu, D., Vianu, V.: Topological Queries in Spatial Databases. Journal of Computer and System Sciences 58(1), 29–53 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Peuquet, D.J., Ci-Xiang, Z.: An Algorithm to Determine the Directional Relationship Between Arbitrarily-Shaped Polygons in the Plane. Pattern Recognition 20(1), 65–74 (1987)CrossRefGoogle Scholar
  16. 16.
    Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer, Heidelberg (1985)Google Scholar
  17. 17.
    Renz, J., Nebel, B.: On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus. Artificial Intelligence 1-2, 95–149 (1999)MathSciNetGoogle Scholar
  18. 18.
    Rigaux, P., Scholl, M., Voisard, A.: Spatial Data Bases. Morgan Kaufmann, San Francisco (2001)Google Scholar
  19. 19.
    Skiadopoulos, S., Giannoukos, C., Vassiliadis, P., Sellis, T., Koubarakis, M.: Computing and Handling Cardinal Direction Information (Extended Report). Technical Report TR-2003-5, National Technical University of Athens (2003), Available at http://www.dblab.ece.ntua.gr/publications
  20. 20.
    Skiadopoulos, S., Koubarakis, M.: Composing Cardinal Directions Relations. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 299–317. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Skiadopoulos, S., Koubarakis, M.: Qualitative Spatial Reasoning with Cardinal Directions. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 341–355. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Skiadopoulos, S., Koubarakis, M.: Composing Cardinal Direction Relations. Artificial Intelligence 152(2), 143–171 (2004)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Zeiler, M.: Modelling our World. The ESRI Guide to Geodatabase Design. ESRI Press (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Spiros Skiadopoulos
    • 1
  • Christos Giannoukos
    • 1
  • Panos Vassiliadis
    • 2
  • Timos Sellis
    • 1
  • Manolis Koubarakis
    • 3
  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensZographou, AthensHellas
  2. 2.Dept. of Computer ScienceUniversity of IoanninaIoannina
  3. 3.Dept. of Electronic and Computer EngineeringTechnical University of CreteChania, Crete

Personalised recommendations