Multiple Precision Interval Packages: Comparing Different Approaches

  • Markus Grimmer
  • Knut Petras
  • Nathalie Revol
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2991)


We give a survey on packages for multiple precision interval arithmetic, with the main focus on three specific packages. One is a Maple package, intpakX, and two are C/C++ libraries, GMP-XSC and MPFI. We discuss their different features, present timing results and show several applications from various fields, where high precision intervals are fundamental.


Chebyshev Polynomial Interval Arithmetic Standard Function Real Interval Interval Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    GMP, GNU Multiple Precision library,
  3. 3.
  4. 4.
    Aberth, O., Schaefer, M.J.: Precise computation using range arithmetic, via C++. ACM TOMS 18(4), 481–491 (1992)MATHCrossRefGoogle Scholar
  5. 5.
    Aberth, O.: Precise numerical methods using C++. Academic Press, New York (1998)Google Scholar
  6. 6.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of Standards (1964)Google Scholar
  7. 7.
    Akyildiz, Y., Popova, E.D., Ullrich, C.P.: Towards a more complete interval arithmetic in Mathematica. In: Proceedings of the Second International Mathematica Symposium, pp. 29–36 (1997)Google Scholar
  8. 8.
    Brass, H.: Quadraturverfahren. Vandenhoeck & Ruprecht, Göttingen (1977)Google Scholar
  9. 9.
    Brass, H., Förster, K.-J.: On the application of the Peano representation of linear functionals in numerical analysis. In: Recent progress in inequalities. Niš, 1996, Math. Appl, vol. 430, pp. 175–202. Kluwer Acad. Publ., Dordrecht (1998)Google Scholar
  10. 10.
    Brent, R.P.: A Fortran multiple-precision arithmetic package. ACM TOMS 4, 57–70 (1978)CrossRefGoogle Scholar
  11. 11.
    Connell, A.E., Corless, R.M.: An experimental interval arithmetic package in Maple. In: Num. Analysis with Automatic Result Verification (1993)Google Scholar
  12. 12.
    Corliss, G.: Intpak for Interval Arithmetic in Maple. Journal of Symbolic Computation 11 (1994)Google Scholar
  13. 13.
    Daney, D., Hanrot, G., Lefèvre, V., Rouillier, F., Zimmermann, P.: The MPFR library (2001),
  14. 14.
    Fischer, W., Lieb, I.: Funktionentheorie. Vieweg (1992)Google Scholar
  15. 15.
    Geulig, I., Krämer, W.: Computeralgebra und Verifikationsalgorithmen. University of Karlsruhe (1998)Google Scholar
  16. 16.
    Geulig, I., Krämer, W.: Intervallrechnung in Maple - Die Erweiterung intpakX zum Paket intpak der Share-Library. University of Karlsruhe (1999)Google Scholar
  17. 17.
    Grimmer, M.: Interval Arithmetic in Maple with intpakX. In: PAMM, vol. 2(1), pp. 442–443. Wiley-InterScience, Hoboken (2003)Google Scholar
  18. 18.
    Hansen, E.: Global optimization using interval analysis. Marcel Dekker, New York (1992)MATHGoogle Scholar
  19. 19.
    Hansen, E., Greenberg, R.I.: An interval Newton method. J. of Applied Math. and Computing 12, 89–98 (1983)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hickey, T.-J., Ju, Q., Van Emden, M.-H.: Interval arithmetic: from principles to implementation. J. of ACM (2002)Google Scholar
  21. 21.
    Higham, N.: Accuracy and stability of numerical algorithms, 2nd edn. SIAM, Philadelphia (2002)MATHCrossRefGoogle Scholar
  22. 22.
    Kearfott, R.B.: Rigorous global search: continuous problems. Kluwer, Dordrecht (1996)MATHGoogle Scholar
  23. 23.
    Kearfott, R.B., Walster, G.W.: On stopping criteria in verified nonlinear systems or optimization algorithms. ACM TOMS 26(3), 373–389 (2000)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Keiper, J.: Interval arithmetic in Mathematica. Interval Computations (3) (1993)Google Scholar
  25. 25.
    Klatte, R., Kulisch, U., Lawo, C., Rauch, M., Wiethoff, A.: C-XSC a C++ class library for extended scientific computing. Springer, Heidelberg (1993)MATHGoogle Scholar
  26. 26.
    Klatte, R., Kulisch, U., et al.: PASCAL-XSC. Springer, Heidelberg (1991)MATHGoogle Scholar
  27. 27.
    Knueppel, O.: PROFIL/BIAS - a fast interval library. Computing 53(3-4), 277–287 (1994)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Krämer, W., Kulisch, U., Lohner, R.: Numerical toolbox for verified computing II – Advanced Numerical Problems (1998) (to appear)Google Scholar
  29. 29.
    Krämer, W.: Mehrfachgenaue reelle und intervallmässige Staggered-Correction Arithmetik mit zugehörigen Standardfunktionen. Report of the Institut für Angewandte Mathematik, Karlsruhe (1988) Google Scholar
  30. 30.
    Kulisch, U.: Advanced Arithmetic for the Digital Computer. Design of the Arithmetic Units. von U.W. Kulisch, Springer, Wien (2002)Google Scholar
  31. 31.
    Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., Krämer, W.: The interval library filib++ 2.0. (Preprint 2001/4) Universität Wuppertal, Germany (2001),
  32. 32.
    Lebedev, N.N.: Special functions and their applications. Dover Publications, Inc., New York (1972)Google Scholar
  33. 33.
    Maeder, R.: The Mathematica Programmer: Interval Plotting and Global Optimization. The Mathematica Journal 7(3), 279–290 (1999)Google Scholar
  34. 34.
    Nurmela, K.J.: Constructing spherical codes by global optimization methods. Research report no 32, Helsinki University of Technology (1995), Available on
  35. 35.
    Petras, K.: Numerical Computation of an Integral Representation for Arithmetic-Average Asian Options (preprint), available on
  36. 36.
    Petras, K.: A Method for Calculating the Complex Complementary Error Function with Prescribed Accuracy (preprint), available on
  37. 37.
    Rall, L.B. (ed.): Automatic differentiation – Techniques and Applications. LNCS, vol. 120. Springer, Heidelberg (1981)MATHGoogle Scholar
  38. 38.
    Revol, N.: Newton’s algorithm using multiple precision interval arithmetic. To appear in Numerical Algorithms, 2003. Research report 4334, INRIA (2001),
  39. 39.
    Revol, N., Rouillier, F.: The MPFI library (2001),
  40. 40.
    Revol, N., Rouillier, F.: Motivations for an arbitrary precision interval arithmetic and the MPFI library. In: Reliable Computing (2003) (to appear)Google Scholar
  41. 41.
    Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial real roots. To appear in J. of Computational and Applied Math., 2003. Research report 4113, INRIA (2001),
  42. 42.
    Rump, S.M.: Solving algebraic problems with high accuraccy, Habilitationsschrift, Karlsruhe (1983); (also contained in Kulisch, U., Miranker, W.L. (eds.): A new approach to scientific computation. Proceedings of a symposium held at the IBM Research Center, Yorktown Heights, N.Y., 1982. Academic Press, New York, 1983, pp. 51–120)Google Scholar
  43. 43.
    Rump, S.: INTLAB - Interval Laboratory. chapter, Developments in reliable computing. In: Csendes, T. (ed.) , pp. 77–104. Kluwer, Dordrecht (1999)Google Scholar
  44. 44.
    Rump, S.: Fast and parallel interval arithmetic. BIT 39(3), 534–554 (1999)MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Schröder, M.: The Laplace transform approach to valuing exotic options: the case of the Asian option. In: Mathematical finance, Trends Math., pp. 328–338. Birkhäuser, Basel (2001)Google Scholar
  46. 46.
    Shub, M., Smale, S.: Complexity of Bezout’s theorem III. Condition number and packing. J. of Complexity 9, 4–14 (1993)MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Sun Microsystems, Inc. C++ interval arithmetic programming reference (2000) Google Scholar
  48. 48.
    Wiethoff, A.: Verifizierte globale Optimierung auf Parallelrechern. PhD thesis, Karlsruhe, Germany (1997)Google Scholar
  49. 49.
    Yohe, J.M.: Portable software for interval arithmetic. Computing, Suppl. 2, 211–229 (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Markus Grimmer
    • 1
  • Knut Petras
    • 2
  • Nathalie Revol
    • 3
  1. 1.Universität Wuppertal, Wissenschaftliches Rechnen / SoftwaretechnologieWuppertalGermany
  2. 2.Institut für Angewandte MathematikTU BraunschweigBraunschweigGermany
  3. 3.INRIA, LIP, École Normale Supérieure de LyonLyon Cedex 07France

Personalised recommendations