Advertisement

Abstract

In the automata-theoretic approach to model checking we check the emptiness of the product of a system S with an automaton \(\mathcal {A}\neg\psi\) for the complemented specification. This gives rise to two automata-theoretic problems: complementation of word automata, which is used in order to generate \(\mathcal {A}\neg\psi\), and the emptiness problem, to which model checking is reduced. Both problems have numerous other applications, and have been extensively studied for nondeterministic Büchi word automata (NBW). Nondeterministic generalized Büchi word automata (NGBW) have become popular in specification and verification and are now used in applications traditionally assigned to NBW. This is due to their richer acceptance condition, which leads to automata with fewer states and a simpler underlying structure.

In this paper we analyze runs of NGBW and use the analysis in order to describe a new complementation construction and a symbolic emptiness algorithm for NGBW. The complementation construction exponentially improves the best known construction for NGBW and is easy to implement. The emptiness algorithm is almost identical to a known variant of the Emerson-Lei algorithm, and our contribution is the strong relation we draw between the complementation construction and the emptiness algorithm – both naturally follow from the analysis of the runs, which easily implies their correctness. This relation leads to a new certified model-checking procedure, where a positive answer to the model-checking query is accompanied by a certificate whose correctness can be checked by methods independent of the model checker. Unlike certificates generated in previous works on certified model checking, our analysis enables us to generate a certificate that can be checked automatically and symbolically.

References

  1. [BFG+97]
    Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., Somenzi", F.: Algebraic decision diagrams and their applications. FMSD 10(2/3), 171–206 (1997)Google Scholar
  2. [BGS00]
    Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected component analysis in n log n symbolic steps. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 37–54. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. [Büc62]
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. Internat. Congr. Logic, Method. and Philos. Sci. 1960, pp. 1–12. Stanford University Press, Stanford (1962)Google Scholar
  4. [Cho74]
    Choueka, Y.: Theories of automata on ω-tapes: A simplified approach. Journal of Computer and System Sciences 8, 117–141 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [EL86]
    Emerson, E.A., Lei, C.-L.: Efficient model checking in fragments of the propositional μ-calculus. In: Proc. 1st LICS, pp. 267–278 (1986)Google Scholar
  6. [FFK+01]
    Fisler, K., Fraer, R., Kamhi, G., Vardi, M.Y., Yang, Z.: Is there a best symbolic cycle-detection algorithm? In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 420–434. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. [GKSV03]
    Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On complementing nondeterministic Büchi automata. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 96–110. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. [GPP03]
    Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components in a linear number of symbolic steps. In: Proc. 14th SODA, pp. 573–582 (2003)Google Scholar
  9. [GPVW95]
    Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Protocol Specification, Testing, and Verification, August 1995, pp. 3–18. Chapman & Hall, Boca Raton (1995)Google Scholar
  10. [GV00]
    De Giacomo, G., Vardi, M.Y.: Automata-theoretic approach to planning for temporally extended goals. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp. 226–238. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. [HKSV97]
    Hardin, R.H., Kurshan, R.P., Shukla, S.K., Vardi, M.Y.: A new heuristic for bad cycle detection using BDDs. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 268–278. Springer, Heidelberg (1997)Google Scholar
  12. [HTKB92]
    Hojati, R., Touati, H., Kurshan, R., Brayton, R.: Efficient ω-regula language containment. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, Springer, Heidelberg (1993)Google Scholar
  13. [Kla91]
    Klarlund, N.: Progress measures for complementation of ω-automata with applications to temporal logic. In: Proc. 32nd FOCS, pp. 358–367 (1991)Google Scholar
  14. [KPR98]
    Kesten, Y., Pnueli, A., Raviv, L.: Algorithmic verification of linear temporal logic specifications. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 1–16. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. [Kur94a]
    Kurshan, R.P.: The complexity of verification. In: 26th STOC, pp. 365–371 (1994)Google Scholar
  16. [Kur94b]
    Kurshan, R.P.: Computer Aided Verification of Coordinating Processes. Princeton Univ. Press, Princeton (1994)Google Scholar
  17. [KV01a]
    Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal methods in System Design 19(3), 291–314 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  18. [KV01b]
    Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Trans. on Computational Logic 2001(2), 408–429 (2001)CrossRefMathSciNetGoogle Scholar
  19. [Mer00]
    Merz, S.: Weak alternating automata in Isabelle/HOL. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 423–440. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. [MH84]
    Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer Science 32, 321–330 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [Mic88]
    Michel, M.: Complementation is more difficult with automata on infinite words. CNET, Paris (1988)Google Scholar
  22. [MP87]
    Manna, Z., Pnueli, A.: Specification and verification of concurrent programs by ∀-automata. In: Proc. Proc. 14th POPL, pp. 1–12 (1987)Google Scholar
  23. [MP92]
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification, Berlin (January 1992)Google Scholar
  24. [MW84]
    Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic specifications. ACM TOPLAS 6(1), 68–93 (1984)zbMATHCrossRefGoogle Scholar
  25. [Nam01]
    Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. [Nec97]
    Necula, G.C.: Proof-carrying code. In: Proc. 24th POPL, pp. 106–119 (1997)Google Scholar
  27. [PPZ01]
    Peled, D., Pnueli, A., Zuck, L.D.: From falsification to verification. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 292–304. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. [PZ01]
    Peled, D., Zuck, L.D.: From model checking to a temporal proof. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 1–14. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. [RBS00]
    Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms for the computation of fair cycles. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 143–160. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  30. [Saf88]
    Safra, S.: On the complexity of ω-automata. In: 29th FOCS, pp. 319–327 (1988)Google Scholar
  31. [SB00]
    Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  32. [Sis94]
    Sistla, A.P.: Satefy, liveness and fairness in temporal logic. Formal Aspects of Computing 6, 495–511 (1994)zbMATHCrossRefGoogle Scholar
  33. [SVW87]
    Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with applications to temporal logic. TCS 49, 217–237 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  34. [THB95]
    Tasiran, S., Hojati, R., Brayton, R.K.: Language containment using nondeterministic ω-automata. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 261–277. Springer, Heidelberg (1995)Google Scholar
  35. [VW94]
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computation 115(1), 1–37 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  36. [Wol83]
    Wolper, P.: Temporal logic can be more expressive. Information and Control 56(1-2), 72–99 (1983)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Orna Kupferman
    • 1
  • Moshe Y. Vardi
    • 2
  1. 1.School of Engineering and Computer ScienceHebrew UniversityJerusalemIsrael
  2. 2.Department of Computer ScienceRice UniversityHoustonU.S.A.

Personalised recommendations