Applying Game Semantics to Compositional Software Modeling and Verification

  • Samson Abramsky
  • Dan R. Ghica
  • Andrzej S. Murawski
  • C. -H. Luke Ong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2988)


We describe a software model checking tool founded on game semantics, highlight the underpinning theoretical results and discuss several case studies. The tool is based on an interpretation algorithm defined compositionally on syntax and thus can also handle open programs. Moreover, the models it produces are equationally fully abstract. These features are essential in the modeling and verification of software components such as modules and turn out to lead to very compact models of programs.


Model Check Regular Expression Semantic Model Open Program Regular Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information and Computation 163 (2000)Google Scholar
  2. 2.
    Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I, II and III. Information and Computation 163 (2000)Google Scholar
  3. 3.
    Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game semantics for Idealized Algol with active expressions. In: Proc. of 1996 Workshop on Linear Logic. ENTCS, vol. 3, Elsevier, Amsterdam (1996); Also [22, Chap. 20]Google Scholar
  4. 4.
    Abramsky, S., McCusker, G.: Full abstraction for Idealized Algol with passive expressions. Theoretical Computer Science 227, 3–42 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Abramsky, S., Honda, K., McCusker, G.: A fully abstract game semantics for general references. In: Proc. of LICS 1998 (1998)Google Scholar
  6. 6.
    Laird, J.: Full abstraction for functional languages with control. In: Proc. of LICS 1997, pp. 58–67 (1997)Google Scholar
  7. 7.
    Hankin, C., Malacaria, P.: Generalised flowcharts and games. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, p. 363. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Hankin, C., Malacaria, P.: Non-deterministic games and program analysis: an application to security. In: Proc. of LICS 1999, pp. 443–452 (1999)Google Scholar
  9. 9.
    Ghica, D.R., McCusker, G.: Reasoning about Idealized algol using regular languages. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, p. 103. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Ghica, D.R.: Regular language semantics for a call-by-value programming language. In: 17th MFPS, Aarhus, Denmark. ENTCS, vol. 45, pp. 85–98. Elsevier, Amsterdam (2001)Google Scholar
  11. 11.
    Ghica, D.R.: A regular-language model for Hoare-style correctness statements. In: Proc. of the Verification and Computational Logic 2001, Florence, Italy (2001)Google Scholar
  12. 12.
    Ghica, D.R.: A Games-based Foundation for Compositional Software Model Checking. PhD thesis, Queen’s University School of Computing, Kingston, Ontario, Canada (2002)Google Scholar
  13. 13.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (1999)Google Scholar
  14. 14.
    Schmidt, D.A.: On the need for a popular formal semantics. ACM SIGPLAN Notices 32, 115–116 (1997)zbMATHCrossRefGoogle Scholar
  15. 15.
    Dill, D.L.: The Murφ verfication system. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Holzmann, G.J., Peled, D.A.: The state of SPIN. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 385–389. Springer, Heidelberg (1996)Google Scholar
  17. 17.
    Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S.: MOCHA: Modularity in model checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc. of 29th POPL, pp. 58–70. ACM Press, New York (2002)Google Scholar
  19. 19.
    Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 260–275. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Păsăreanu, C.S., Zheng, H.: Bandera. In: Proc. of the 22nd International Conference on Software Engineering, pp. 439–448. ACM Press, New York (2000)Google Scholar
  21. 21.
    Reynolds, J.C.: The essence of Algol. In: de Bakker, J.W., van Vliet, J.C. (eds.) Algorithmic Languages, Proc. of the International Symposium on Algorithmic Languages, pp. 345–372. North-Holland, Amsterdam (1981)Google Scholar
  22. 22.
    O’Hearn, P.W., Tennent, R.D. (eds.): Algol-like Languages. Progress in Theoretical Computer Science, Two volumes. Birkhäuser, Boston (1997)Google Scholar
  23. 23.
    Abramsky, S.: Algorithmic game semantics: A tutorial introduction. Lecture notes, Marktoberdorf International Summer School 2001 (2001)Google Scholar
  24. 24.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  25. 25.
    Reape, M., Thompson, H.S.: Parallel intersection and serial composition of finite state transducers. In: COLING 1988, pp. 535–539 (1988)Google Scholar
  26. 26.
    Ong, C.H.L.: Observational equivalence of third-order Idealized Algol is decidable. In: Proc. of LICS 2002, pp. 245–256 (2002)Google Scholar
  27. 27.
    Ghica, D.R., McCukser, G.: The regular-language semantics of first-order Idealized algol. Theoretical Computer Science (to appear)Google Scholar
  28. 28.
    Murawski, A.S.: Variable scope and call-by-value program equivalence (2003) (in preparation)Google Scholar
  29. 29.
    Senizergues: L(A) = L(B)? decidability results from complete formal systems. TCS: Theoretical Computer Science 251 (2001)Google Scholar
  30. 30.
    Stirling, C.: Deciding DPDA equivalence is primitive recursive. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 821–865. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  31. 31.
    Murawski, A.S.: On program equivalence in languages with ground-type references. In: Proc. of LICS 2003, IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  32. 32.
    Murawski, A.S.: Complexity of first-order call-by-name program equivalence (2003) (submitted for publication)Google Scholar
  33. 33.
    AT&T FSM Librarytm – general-purpose finite-state machine software tools,
  34. 34.
    Ghica, D.R.: Game-based software model checking: Case studies and methodological considerations. Technical Report PRG-RR-03-11, Oxford University Computing Laboratory (2003)Google Scholar
  35. 35.
    Hatcliff, J., Dwyer, M.B., Zheng, H.: Slicing software for model construction. Higher-Order and Symbolic Computation 13, 315–353 (2000)zbMATHCrossRefGoogle Scholar
  36. 36.
    Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: Dwork, C. (ed.) Proc. of the 9th Annual ACM Symposium on Principles of Distributed Computing, Québec City, Québec, Canada, pp. 377–408. ACM Press, New York (1990)CrossRefGoogle Scholar
  37. 37.
    Colby, C., Godefroid, P., Jagadeesan, L.: Automatically closing open reactive programs. In: Proc. of PLDI 1998, Montreal, Canada, pp. 345–357 (1998)Google Scholar
  38. 38.
    de Alfaro, L., Henzinger, T.A.: Interface automata. In: Gruhn, V. (ed.) Proc. of the 9th ESEC/FSE 2001. Software Engineering Notes, vol. 26(5), pp. 109–120. ACM Press, New York (2001)CrossRefGoogle Scholar
  39. 39.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. of the ACM 49, 672–713 (2002)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Ghica, D.R., Murawski, A.S.: Angelic semantics of fine-grained concurrency. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 211–225. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar
  41. 41.
    Lazic, R.S.: A Semantic Study of Data Independence with Applications to Model Checking. PhD thesis, University of Oxford (1999)Google Scholar
  42. 42.
    Lazic, R., Nowak, D.: A unifying approach to data-independence. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, p. 581. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Samson Abramsky
    • 1
  • Dan R. Ghica
    • 1
  • Andrzej S. Murawski
    • 1
  • C. -H. Luke Ong
    • 1
  1. 1.Computing LaboratoryOxford UniversityOxfordU. K.

Personalised recommendations