Advertisement

Abstract

We present a method of deriving Craig interpolants from proofs in the quantifier-free theory of linear inequality and uninterpreted function symbols, and an interpolating theorem prover based on this method. The prover has been used for predicate refinement in the Blast software model checker, and can also be used directly for model checking infinite-state systems, using interpolation-based image approximation.

References

  1. 1.
    Craig, W.: Linear reasoning: A new form of the Herbrand-Gentzen theorem. J. Symbolic Logic 22(3), 250–268 (1957)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    de Moura, L., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model checking over infinite domains. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, p. 438. Springer, Heidelberg (2002)Google Scholar
  3. 3.
    Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: ACM Symp. on Principles of Prog. Lang, POPL 2004 (2004) (to appear)Google Scholar
  4. 4.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model Checking: 1020 States and Beyond. In: Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, Washington, D.C., pp. 1–33. IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  5. 5.
    Krajíc̆ek, J.: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. Symbolic Logic 62(2), 457–486 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lahiri, S.K., Bryant, R.E., Cook, B.: A symbolic approach to predicate abstraction. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 141–153. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    McMillan, K.L.: Interpolation and sat-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003) (to appear)CrossRefGoogle Scholar
  9. 9.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Design Automation Conference, pp. 530–535 (2001)Google Scholar
  10. 10.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. on Prog. Lang. and Sys. 1(2), 245–257 (1979)zbMATHCrossRefGoogle Scholar
  11. 11.
    Plaisted, D., Greenbaum, S.: A structure preserving clause form translation. Journal of Symbolic Computation 2, 293–304 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symbolic Logic 62(2), 981–998 (1997)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Saïdi, H., Graf, S.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Silva, J.P.M., Sakallah, K.A.: GRASP-a new search algorithm for satisfiability. In: Proceedings of the International Conference on Computer-Aided Design (November 1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • K. L. McMillan
    • 1
  1. 1.Cadence Berkeley Labs 

Personalised recommendations