Revisiting Positive Equality

  • Shuvendu K. Lahiri
  • Randal E. Bryant
  • Amit Goel
  • Muralidhar Talupur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2988)


This paper provides a stronger result for exploiting positive equality in the logic of Equality with Uninterpreted Functions (EUF). Positive equality analysis is used to reduce the number of interpretations required to check the validity of a formula. We remove the primary restriction of the previous approach proposed by Bryant, German and Velev [5], where positive equality could be exploited only when all the function applications for a function symbol appear in positive context. We show that the set of interpretations considered by our analysis of positive equality is a subset of the set of interpretations considered by the previous approach. The paper investigates the obstacles in exploiting the stronger notion of positive equality (called robust positive equality) in a decision procedure and provides a solution for it. We present empirical results on some verification benchmarks.


  1. 1.
    Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland, Amsterdam (1954)MATHGoogle Scholar
  2. 2.
    Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of C programs. In: Programming Language Design and Implementation (PLDI 2001), Snowbird, Utah, (June 2001); SIGPLAN Notices, 36(5) (May 2001)Google Scholar
  3. 3.
    Barrett, C., Dill, D., Levitt, J.: Validity checking for combinations of theories with equality. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 187–201. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Barrett, C.W., Dill, D.L., Stump, A.: Checking Satisfiability of First-Order Formulas by Incremental Translation to SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 236–249. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bryant, R.E., German, S., Velev, M.N.: Exploiting positive equality in a logic of equality with uninterpreted functions. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 470–482. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Bryant, R.E., German, S., Velev, M.N.: Processor verification using efficient reductions of the logic of uninterpreted functions to propositional logic. ACM Transactions on Computational Logic 2(1), 1–41 (2001)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and Verifying Systems using a Logic of Counter Arithmetic with Lambda Expressions and Uninterpreted Functions. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Burch, J.R., Dill, D.L.: Automated verification of pipelined microprocessor control. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Flanagan, C., Joshi, R., Ou, X., Saxe, J.: Theorem Proving usign Lazy Proof Explication. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 355–367. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Goel, A., Sajid, K., Zhou, H., Aziz, A., Singhal, V.: BDD based procedures for a theory of equality with uninterpreted functions. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 244–255. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: Launchbury, J., Mitchell, J.C. (eds.) Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of programming languages (POPL 2002), pp. 58–70 (2002)Google Scholar
  12. 12.
    Lahiri, S.K.: An efficient decision procedure for the logic of Counters, Constrained Lambda expressions, Uninterpreted Functions and Ordering. Master’s thesis, ECE Department, Carnegie Mellon University (May 2001)Google Scholar
  13. 13.
    Lahiri, S.K., Bryant, R.E., Cook, B.: A symbolic approach to predicate abstraction. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 141–153. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Lahiri, S.K., Bryant, R.E., Goel, A., Talupur, M.: Revisiting positive equality. Technical Report CMU-CS-03-196, Carnegie Mellon University (November 2003)Google Scholar
  15. 15.
    Lahiri, S.K., Seshia, S.A., Bryant, R.E.: Modeling and verification of out-of-order microprocessors in UCLID. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 142–159. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: 38th Design Automation Conference, DAC 2001 (2001)Google Scholar
  17. 17.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Transactions on Programming Languages and Systems (TOPLAS) 2(1), 245–257 (1979)CrossRefGoogle Scholar
  18. 18.
    Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, Springer, Heidelberg (1992)Google Scholar
  19. 19.
    Pnueli, A., Rodeh, Y., Shtrichman, O., Siegel, M.: Deciding equality formulas by small-domain instantiations. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 455–469. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Pnueli, A., Rodeh, Y., Strichman, O., Siegel, M.: The Small Model Property: How Small Can It Be? Information and Computation. Information and Computation 178(1), 279–293 (2002)MATHMathSciNetGoogle Scholar
  21. 21.
    Rodeh, Y., Strichmann, O.: Finite Instantiations in Equivalence Logic with Uninterpreted Functions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 144–154. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Shostak, R.E.: Deciding Combinations of Theories. Journal of the ACM 31(1), 1–12 (1984)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Shuvendu K. Lahiri
    • 1
  • Randal E. Bryant
    • 1
  • Amit Goel
    • 1
  • Muralidhar Talupur
    • 1
  1. 1.Carnegie Mellon UniversityPittsburgh

Personalised recommendations