Polynomials for Proving Termination of Context-Sensitive Rewriting

  • Salvador Lucas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2987)


We show how to generate well-founded and stable term orderings based on polynomial interpretations over the real numbers. Monotonicity (another usual requirement in termination proofs) can, then, be gradually introduced in the interpretations to deal with different applications. For instance, the dependency pairs method for proving termination of rewriting, and some restrictions of the rewrite relation which are not monotonic in all arguments of the function symbols, can benefit from this approach. The latter is the case for context-sensitive rewriting (CSR), a simple restriction of rewriting which has been proved useful for describing the semantics of several programming languages (e.g., Maude) and analyzing the properties of the corresponding programs. We show how to automatically generate polynomial interpretations over the real numbers for proving termination of CSR.


Programming languages rewriting termination 


  1. 1.
    Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. Theoretical Computer Science 236, 133–178 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. CUP (1998)Google Scholar
  3. 3.
    ben Cherifa, A., Lescanne, P.: Termination of rewriting systems by polynomial interpretations and its implementation. Science of Computer Programming 9(2), 137–160 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Contejean, E., Marché, C.: CiME: Completion Modulo E. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 416–419. Springer, Berlin (1996)Google Scholar
  5. 5.
    Dershowitz, N.: Orderings for term rewriting systems. Theoretical Computer Science 17(3), 279–301 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Giesl, J.: Generating Polynomial Orderings for Termination Proofs. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 426–431. Springer, Berlin (1995)Google Scholar
  7. 7.
    Giesl, J., Arts, T., Ohlebusch, E.: Modular Termination Proofs for Rewriting Using Dependency Pairs. Journal of Symbolic Computation 38, 21–58 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gramlich, B., Lucas, S.: Simple termination of context-sensitive rewriting. In: Proc. of RULE 2002, pp. 29–41. ACM Press, New York (2002)CrossRefGoogle Scholar
  9. 9.
    Giesl, J., Middeldorp, A.: Transformation Techniques for Context-Sensitive Rewrite Systems. Journal of Functional Programming (2004) (to appear)Google Scholar
  10. 10.
    Hofbauer, D.: Termination proofs by context-dependent interpretations. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 108–121. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Lankford, D.S.: On proving term rewriting systems are noetherian. Technical Report, Louisiana Technological University, Ruston, LA (1979)Google Scholar
  12. 12.
    Lucas, S.: Context-sensitive computations in functional and functional logic programs. Journal of Functional and Logic Programming 1998(1), 1–61 (1998)Google Scholar
  13. 13.
    Lucas, S.: Termination of programs with strategy annotations. Technical Report DSIC II/20/03, Universidad Politécnica de Valencia (September 2003)Google Scholar
  14. 14.
    Steinbach, J.: Generating Polynomial Orderings. Information Processing Letters 49, 85–93 (1994)zbMATHCrossRefGoogle Scholar
  15. 15.
    Zantema, H.: Termination of Context-Sensitive Rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 172–186. Springer, Berlin (1997)Google Scholar
  16. 16.
    Zantema, H.: Termination. In: TeReSe (ed.) Term Rewriting Systems, ch. 6. Cambridge University Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Salvador Lucas
    • 1
  1. 1.DSIC, Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations