Advertisement

Abstract

We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well to rewriting on arbitrary adhesive categories.

Keywords

Front Face Dependency Relation Graph Transformation Initial Object Graph Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baldan, P., Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Rossi, F.: Concurrent semantics of algebraic graph transformations. In: Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation, ch.3, vol. 3, pp. 107–187. World Scientific, Singapore (1999)Google Scholar
  2. 2.
    Brown, R., Janelidze, G.: Van Kampen theorems for categories of covering morphisms in lextensive categories. J. Pure Appl. Algebra 119, 255–263 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carboni, A., Lack, S., Walters, R.F.C.: Introduction to extensive and distributive categories. Journal of Pure and Applied Algebra 84(2), 145–158 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cardelli, L.: Bitonal membrane systems. Draft (2003)Google Scholar
  5. 5.
    Corradini, A., Ehrig, H., Heckel, R., Lowe, M., Montanari, U., Rossi, F.: Algebraic approaches to graph transformation part i: Basic concepts and double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, pp. 162–245. World Scientific, Singapore (1997)Google Scholar
  6. 6.
    Danos, V., Laneve, C.: Graphs for core molecular biology. In: International Workshop on Computational Methods in Systems Biology, CMSB 2003 (2003)Google Scholar
  7. 7.
    Ehrig, H.: Introduction to the algebraic theory of graph grammars. In: 1st Int. Workshop on Graph Grammars. LNCS, vol. 73, pp. 1–69. Springer, Heidelberg (1979)Google Scholar
  8. 8.
    Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation, Applications, Languages and Tools, vol. 2. World Scientific, Singapore (1999)Google Scholar
  9. 9.
    Ehrig, H., Gajewsky, M., Parisi-Presicce, F.: High-level replacement systems with applications to algebraic specifications and Petri Nets. In: Ehrig, H., Kreowsky, H.-J., Montanari, U., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation, ch.6, vol. 3, pp. 341–400. World Scientific, Singapore (1999)Google Scholar
  10. 10.
    Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: From graph grammars to high level replacement systems. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 269–291. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  11. 11.
    Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: Parallelism and concurrency in high-level replacement systems. Math. Struct. In: Comp. Science, 1 (1991)Google Scholar
  12. 12.
    Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation, Concurrency, Parallelism and Distribution, vol. 3. World Scientific, Singapore (1999)Google Scholar
  13. 13.
    Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach. In: IEEE Conf. on Automata and Switching Theory, pp. 167–180 (1973)Google Scholar
  14. 14.
    Kreowski, H.-J.: Transformations of derivation sequences in graph grammars. LNCS, vol. 56, pp. 275–286 (1977)Google Scholar
  15. 15.
    Lack, S., Sobociński, P.: Adhesive categories. Technical Report RS-03-31, BRICS (October 2003)Google Scholar
  16. 16.
    Lack, S., Sobociński, P.: Van Kampen squares and adhesive categories (2003) (In Preparation)Google Scholar
  17. 17.
    Lambek, J., Scott, P.J.: Introduction to higher order categorical logic. Cambridge studies in advanced mathematics, vol. 7. Cambridge University Press, Cambridge (1986)zbMATHGoogle Scholar
  18. 18.
    Milner, R.: Bigraphical reactive systems: Basic theory. Technical Report 523, Computer Laboratory, University of Cambridge (2001)Google Scholar
  19. 19.
    Montanari, U., Pistore, M., Rossi, F.: Modelling concurrent, mobile and coordinated systems via graph transformations. In: Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation, ch.4, vol. 3, pp. 189–268. World Scientific, Singapore (1999)Google Scholar
  20. 20.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation, Foundations, vol. 1. World Scientific, Singapore (1997)Google Scholar
  21. 21.
    Sassone, V., Sobociński, P.: Deriving bisimulation congruences using 2- categories. Nordic Journal of Computing 10(2), 163–183 (2003)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Stephen Lack
    • 1
  • Paweł Sobociński
    • 2
  1. 1.School of Quantitative Methods and Mathematical SciencesUniversity of Western SydneyAustralia
  2. 2.BRICSUniversity of AarhusDenmark

Personalised recommendations