Advertisement

On Finite Alphabets and Infinite Bases: From Ready Pairs to Possible Worlds

  • Wan Fokkink
  • Sumit Nain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2987)

Abstract

We prove that if a finite alphabet of actions contains at least two elements, then the equational theory for the process algebra BCCSP modulo any semantics no coarser than readiness equivalence and no finer than possible worlds equivalence does not have a finite basis. This semantic range includes ready trace equivalence.

Keywords

Equational Theory Label Transition System Process Algebra Finite Alphabet Finite Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aceto, L., Fokkink, W.J., van Glabbeek, R.J., Ingólfsdóttir, A.: Axiomatizing prefix iteration with silent steps. Information Computation 127(1), 26–40 (1996)zbMATHCrossRefGoogle Scholar
  2. 2.
    Aceto, L., Fokkink, W.J., Ingólfsdóttir, A.: A menagerie of non-finitely based process semantics over BPA∗: From ready simulation to completed traces. Mathematical Structures in Computer Science 8(3), 193–230 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Aceto, L., Fokkink, W.J., Ingólfsdóttir, A.: 2-nested simulation is not finitely equationally axiomatizable. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 39–50. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Ready-trace semantics for concrete process algebra with the priority operator. The Computer Journal 30(6), 498–506 (1987)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Blom, S.C.C., Fokkink, W.J., Nain, S.: On the axiomatizability of ready traces, ready simulation and failure traces. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, Springer, Heidelberg (2003) (to appear)Google Scholar
  6. 6.
    Fokkink, W.J., Luttik, S.P.: An ω-complete equational specification of interleaving. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 729–743. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    van Glabbeek, R.J.: In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 473–484. Springer, Heidelberg (1993)Google Scholar
  8. 8.
    van Glabbeek, R.J.: The linear time – branching time spectrum I. The semantics of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  9. 9.
    Groote, J.F.: A new strategy for proving ω-completeness with applications in process algebra. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 314–331. Springer, Heidelberg (1990)Google Scholar
  10. 10.
    Gurevič, R.: Equational theory of positive natural numbers with exponentiation is not finitely axiomatizable. Annals of Pure and Applied Logic 49, 1–30 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Heering, J.: Partial evaluation and ω-completeness of algebraic specifications. Theoretical Computer Science 43, 149–167 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Henkin, L.: The logic of equality. American Mathematical Monthly 84(8), 597–612 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lazrek, A., Lescanne, P., Thiel, J.-J.: Tools for proving inductive equalities, relative completeness, and ω-completeness. Information and Computation 84(1), 47–70 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Lyndon, R.C.: Identities in two-valued calculi. Transactions of the American Mathematical Society 71, 457–465 (1951)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    McKenzie, R.N.: Tarski’s finite basis problem is undecidable. International Journal of Algebra and Computation 6(1), 49–104 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    McKenzie, R.N., McNulty, G., Taylor, W.: Algebras, Varieties, Lattices. Wadsworth & Brooks/Cole (1987)Google Scholar
  17. 17.
    Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  18. 18.
    Milner, R.: A complete axiomatisation for observational congruence of finite-state behaviours. Information and Computation 81(2), 227–247 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Moller, F.: Axioms for Concurrency. PhD thesis, University of Edinburgh (1989)Google Scholar
  20. 20.
    Murskiĭ, V.L.: The existence in the three-valued logic of a closed class with a finite basis having no finite complete system of identities. Doklady Akademii Nauk SSSR 163, 815–818 (1965) (In Russian)Google Scholar
  21. 21.
    Murskiĭ, V.L.: The existence of a finite basis of identities, and other properties of “almost all” finite algebras. Problemy Kibernetiki 30, 43–56 (1975) (in Russian)Google Scholar
  22. 22.
    Olderog, E.-R., Hoare, C.A.R.: Specification-oriented semantics for communicating processes. Acta Informatica 23(1), 9–66 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  24. 24.
    Plotkin, G.D.: A structural approach to operational semantics. Report DAIMI FN- 19, Aarhus University (1981)Google Scholar
  25. 25.
    Plotkin, G.D.: The λ-calculus is ω-incomplete. Journal of Symbolic Logic 39, 313–317 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Pnueli, A.: Linear and branching structures in the semantics and logics of reactive systems. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 15–32. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  27. 27.
    Rounds, W.C., Brookes, S.D.: Possible futures, acceptances, refusals, and communicating processes. In: Proceedings 22nd IEEE Symposium on Foundations of Comper Science (FOCS 1981), Nashville, pp. 140–149. IEEE Computer Society Press, Los Alamitos (1981)CrossRefGoogle Scholar
  28. 28.
    Veglioni, S., De Nicola, R.: Possible worlds for process algebras. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 179–193. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Wan Fokkink
    • 1
    • 2
  • Sumit Nain
    • 3
  1. 1.Department of Software EngineeringCWIAmsterdamThe Netherlands
  2. 2.Department of Theoretical Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Computer Science and EngineeringIIT DelhiHauz Khas, New DelhiIndia

Personalised recommendations