From Constraints to Finite Automata to Filtering Algorithms

  • Mats Carlsson
  • Nicolas Beldiceanu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2986)

Abstract

We introduce an approach to designing filtering algorithms by derivation from finite automata operating on constraint signatures. We illustrate this approach in two case studies of constraints on vectors of variables. This has enabled us to derive an incremental filtering algorithm that runs in O(n) plus amortized O(1) time per propagation event for the lexicographic ordering constraint over two vectors of size n, and an O(nmd) time filtering algorithm for a chain of m-1 such constraints, where d is the cost of certain domain operations. Both algorithms maintain hyperarc consistency. Our approach can be seen as a first step towards a methodology for semi-automatic development of filtering algorithms.

References

  1. 1.
    Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Proc. of the National Conference on Artificial Intelligence (AAAI 1994), pp. 362–367 (1994)Google Scholar
  2. 2.
    Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: Proc. of the National Conference on Artificial Intelligence (AAAI 1994), pp. 209–215 (1996)Google Scholar
  3. 3.
    Baptiste, P., LePape, C., Nuijten, W.: Constraint-Based Scheduling. Kluwer Academic Publishers, Dordrecht (2001)MATHGoogle Scholar
  4. 4.
    Tucker, A.: Applied Combinatorics, 4th edn. John Wiley & Sons, Chichester (2002)Google Scholar
  5. 5.
    Carlsson, M., Beldiceanu, N.: Arc-consistency for a Chain of Lexicographic Ordering Constraints. Technical Report T2002-18, Swedish Institute of Computer Science (2002)Google Scholar
  6. 6.
    Carlsson, M., Beldiceanu, N.: Revisiting the Lexicographic Ordering Constraint. Technical Report T2002-17, Swedish Institute of Computer Science (2002)Google Scholar
  7. 7.
    Carlsson, M., et al.: SICStus Prolog User’s Manual. Swedish Institute of Computer Science, 3.10 edn. (January 2003), http://www.sics.se/sicstus/
  8. 8.
    Beldiceanu, N., Aggoun, A.: Time stamps techniques for the trailed data in CLP systems. In: Actes du Séminaire 1990 - Programmation en Logique, Tregastel, France, CNET (1990)Google Scholar
  9. 9.
    Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Global Constraints for Lexicographic Orderings. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 93–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications, http://www.grappa.univ-lille3.fr/tata/
  11. 11.
    COSYTEC S.A. CHIP Reference Manual, version 5 edn., The sequence constraint (1996)Google Scholar
  12. 12.
    Régin, J.-C., Puget, J.F.: A filtering algorithm for global sequencing constraints. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Mats Carlsson
    • 1
  • Nicolas Beldiceanu
    • 2
  1. 1.SICSKISTASweden
  2. 2.LINA FRE CNRS 2729 École des Mines de Nantes La ChantrerieNANTES Cedex 3France

Personalised recommendations