A Differential Method for Parametric Surface Intersection

  • A. Gálvez
  • J. Puig-Pey
  • A. Iglesias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3044)

Abstract

In this paper, a new method for computing the intersection of parametric surfaces is proposed. In our approach, this issue is formulated in terms of an initial value problem of first-order ordinary differential equations (ODEs), which are to be numerically integrated. In order to determine the initial value for this system, a simple procedure based on the vector field associated with the gradient of the distance function between points lying on each of the parametric surfaces is described. Such a procedure yields a starting point on the nearest branch of the intersection curve. The performance of the presented method is analyzed by means of some illustrative examples that contain many of the most common features found in parametric surface intersection problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdel-Malek, K., Yeh, H.J.: On the determination of starting points for parametric surface intersections. Computer Aided Design 28(1), 21–35 (1997)CrossRefGoogle Scholar
  2. 2.
    Anand, V.: Computer Graphics and Geometric Modeling for Engineers. John Wiley and Sons, New York (1993)Google Scholar
  3. 3.
    Bajaj, C., Hoffmann, C.M., Hopcroft, J.E.H., Lynch, R.E.: Tracing surface intersections. Computer Aided Geometric Design 5, 285–307 (1988)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barnhill, R.E., Kersey, S.N.: A marching method for parametric surface/surface intersection. Computer Aided Geometric Design 7, 257–280 (1990)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Barnhill, R.E. (ed.): Geometry Procesing for Design and Manufacturing. SIAM, Philadelphia (1992)Google Scholar
  6. 6.
    Chandru, V., Dutta, D., Hoffmann, C.M.: On the geometry of Dupin cyclides. The Visual Computer 5, 277–290 (1989)CrossRefGoogle Scholar
  7. 7.
    Choi, B.K., Jerard, R.B.: Sculptured Surface Machining. Theory and Applications. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  8. 8.
    Farin, G.: An SSI bibliography. In: Barnhill, R. (ed.) Geometry Processing for Design and Manufacturing, pp. 205–207. SIAM, Philadelphia (1992)Google Scholar
  9. 9.
    Farin, G., Hoschek, J., Kim, M.S. (eds.): The Handbook of Computer-Aided Geometric Design. North-Holland, Amsterdam (2002)Google Scholar
  10. 10.
    Grandine, T.A., Klein, F.W.: A new approach to the surface intersection problem. Computer Aided Geometric Design 14, 111–134 (1997)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Grandine, T.A.: Applications of contouring. SIAM Review 42, 297–316 (2000)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hoschek, J., Lasser, D.: Computer-Aided Geometric Design. A.K. Peters, Wellesley (1993)MATHGoogle Scholar
  13. 13.
    Iglesias, A.: Computational methods for geometric processing of surfaces: blending, offsetting, intersection, implicitization. In: Sarfraz, M. (ed.) Advances in Geometric Modeling, ch. 5, John Wiley and Sons, Chichester (2003)Google Scholar
  14. 14.
    The Mathworks Inc: Using Matlab. Natick, MA (1999)Google Scholar
  15. 15.
    Kriezis, G.A., Patrikalakis, N.M., Wolters, F.E.: Topological and differentialequation methods for surface reconstructions. Computer Aided Design 24(1), 41–55 (1992)MATHCrossRefGoogle Scholar
  16. 16.
    Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer, Heidelberg (2002)MATHGoogle Scholar
  17. 17.
    Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1997)Google Scholar
  18. 18.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, 2nd edn. Cambridge University Press, Cambridge (1992)Google Scholar
  19. 19.
    Pratt, M.J., Geisow, A.D.: Surface-surface intersection problems. In: Gregory, J.A. (ed.) The Mathematics of Surfaces, pp. 117–142. Clarendon Press, Oxford (1986)Google Scholar
  20. 20.
    Puig-Pey, J., Gálvez, A., Iglesias, A.: A new differential approach for parametricimplicit surface intersection. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 897–906. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Sederberg, T.W., Meyers, R.J.: Loop detection in surface patch intersections. Computer Aided Geometric Design 5, 161–171 (1988)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. Gálvez
    • 1
  • J. Puig-Pey
    • 1
  • A. Iglesias
    • 1
  1. 1.Department of Applied Mathematics and Computational SciencesUniversity of CantabriaSantanderSpain

Personalised recommendations