Global Synchronization in Sensornets

  • Jeremy Elson
  • Richard M. Karp
  • Christos H. Papadimitriou
  • Scott Shenker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2976)


Time synchronization is necessary in many distributed systems, but achieving synchronization in sensornets, which combine stringent precision requirements with severe resource constraints, is particularly challenging. This challenge has been met by the recent Reference-Broadcast Synchronization (RBS) proposal, which provides on-demand pairwise synchronization with low overhead and high precision. In this paper we introduce a model of the basic RBS synchronization paradigm. Within the context of this model we characterize the optimally precise clock synchronization algorithm and establish its global consistency. In the course of this analysis we point out unexpected connections between optimal clock synchronization, random walks, and resistive networks, and present a polynomial-time approximation scheme for the problem of calculating the effective resistance in a network based on min-cost flow. We also sketch a polynomial-time algorithm for finding a schedule of data acquisition giving the optimal trade-off between energy consumption and precision of clock synchronization. We also discuss synchronization in the presence of clock skews. In ongoing work we are adapting our synchronization algorithm for execution in a network of seismic sensors that requires global clock consistency.


Global Position System Unbiased Estimator Time Synchronization Effective Resistance Clock Synchronization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Attiya, H., Herzberg, A., Rajsbaum, S.: Clock Synchronization Under Different Delay Assumptions. SIAM Journal on Computing 25(2), 369–389 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation – Numerical Methods. Prentice Hall, Englewood Cliffs (1989); ISBN 0-13-648759-9zbMATHGoogle Scholar
  3. 3.
    Bychkovskiy, V., Megerian, S., Estrin, D., Potkonjak, M.: Colibration: A Collaborative Approach to In-Place Sensor Calibration. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Cristian, F.: Probabilistic Clock Synchronization. Distributed Computing 3, 146–158 (1989)zbMATHCrossRefGoogle Scholar
  5. 5.
    Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks, Mathematical Association of America, Washington, D. C. (1984)Google Scholar
  6. 6.
    Elson, J.: Time Synchronization in Wireless Sensor Networks, Ph.D. thesis, University of californaia, Los Angeles (2003)Google Scholar
  7. 7.
    Elson, J., Girod, L., Estrin, D.: Fine–grained Network Time Synchronization Using Reference Broadcasts. In: Proceedings of the Fifth Symposium on Operating Systems Design and Implementation (OSDI), Boston, MA, December 2002, pp. 147–163 (2002)Google Scholar
  8. 8.
    Ganeriwal, S., Kumar, R., Adlakha, S., Srivastava, M.: Network-wide Time Synchronization in Sensor Networks. Technical Report, University of California, Dept. of Electrical Engineering (2002)Google Scholar
  9. 9.
    Grotschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1993)Google Scholar
  10. 10.
    Halpern, J., Megiddo, N., Munshi, A.: Optimal Precision in the Presence of Uncertainty. J. Complexity 1, 170–196 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hill, J., Culler, D.: A Wireless Embedded Sensor Architecture for System-level Optimization. Tech. rep., U.C. Berkeley (2001)Google Scholar
  12. 12.
    Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System Architecture Directions for Networked Sensors. In: Proceedings of the Ninth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS IX), November 2000, pp. 93–104. ACM, New York (2000)CrossRefGoogle Scholar
  13. 13.
    Hu, T.C.: Minimum Cost Flows in Convex Cost Networks. Naval Research Logistics Quarterlu 13(1), 1–9 (1966)CrossRefGoogle Scholar
  14. 14.
    Karger, D.R., Levine, M.S.: Random Sampling in Residual Graphs. In: STOC 2002, pp. 63–66 (2002)Google Scholar
  15. 15.
    Karp, R., Elson, J., Estrin, D., Shenker, S.: Optimal and Global Clock Synchronization in Sensornets (preprint, 2003)Google Scholar
  16. 16.
    Lehmann, E.L.: Theory of Point Estimation. Chapman and Hall, New York (1991)Google Scholar
  17. 17.
    Liao, C., Martonosi, M., Clark, D.: Experience with an Adaptive Globally-Synchronizing Clock Algorithm. In: Eleventh Annual Symposium on Parallel Algorithms and Architectures (SPAA 1999), pp. 106–114 (1999)Google Scholar
  18. 18.
    Lundelius, J., Lynch, N.: An Upper and Lower Bound for Clock Synchronization. Information and Control 62, 190–204 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Mills, D.: Internet Time Synchronization: The Network Time Protocol. In: Yang, Z., Anthony Marsland, T. (eds.) Global States and Time in Distributed Systems. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  20. 20.
    Mock, M., Frings, R., Nett, E., Trikaliotis, S.: Continuous Clock Synchronization in Wireless Real-time Applications. In: The 19th IEEE Symposium on Reliable Distributed Systems (SRDS 2000), October 2000, pp. 125–133 (2000)Google Scholar
  21. 21.
    Römer, K.: Time Synchronization in Ad Hoc Networks. In: ACM Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2001 (October 2001)Google Scholar
  22. 22.
    Patt-Shamir, B., Rajsbaum, S.: A Theory of Clock Synchronization. In: STOC, pp. 810–819 (1994)Google Scholar
  23. 23.
    Srikanth, T.K., Toueg, S.: Optimal Clock Synchronization. J-ACM 34(3), 626–645 (1987)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Simons, B., Welch, J.L., Lynch, N.A.: An Overviewof Clock Synchronization. In: Fault-Tolerant Distributed Computing 1986, pp. 84–96 (1986)Google Scholar
  25. 25.
    Su, W., Akylidis, I.: Time-Diffusion Sensor Protocol for Sensor Networks. Technical report, Georgia Institute of Technology (2002)Google Scholar
  26. 26.
    Verissimo, P., Rodrigues, L.: A Posteriori Agreement for Fault-Tolerant Clock Synchronization on Broadcast Networks. In: Pradhan, D.K. (ed.) Proceedings of the 22nd Annual International Symposium on Fault-Tolerant Computing (FCTS 1992), p. 85. IEEE Computer Society Press, Los Alamitos (1992)Google Scholar
  27. 27.
    Verissimo, P., Rodrigues, L., Casimiro, A.: Cesiumspray: A Precise and Accurate Global Time Servive for Large-Scale Systems. Technical Report NAV-TR-97-0001, Universidade de Lisboa (1997)Google Scholar
  28. 28.
    Calibration as Parameter Estimation in Sensor Networks. In: Proceedings of the First ACM International Workshop on Sensor Networks and Applications (WSNA 2002) (September 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jeremy Elson
    • 1
  • Richard M. Karp
    • 1
  • Christos H. Papadimitriou
    • 1
  • Scott Shenker
    • 1
  1. 1.UCLA and Information Sciences Institute (Elson)UC Berkeley and International Computer Science Institute (Karp, Papadimitriou, Shenker) 

Personalised recommendations