Advertisement

Arithmetic Circuits for Discrete Logarithms

  • Joachim von zur Gathen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2976)

Abstract

We introduce a new model of “generic discrete log algorithms” based on arithmetic circuits. It is conceptually simpler than previous ones, is actually applicable to the natural representations of the popular groups, and we can derive upper and lower bounds that differ only by a constant factor, namely 10.

Keywords

Discrete logarithm generic algorithm arithmetic circuit cyclic group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babai, L., Szemerédi, E.: On the complexity of matrix group problems I. In: Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer Science, Singer Island FL, pp. 229–240. IEEE Computer Society Press, Los Alamitos (1984); ISBN 0-8186-0591-X. ISSN 0272-5428Google Scholar
  2. 2.
    Boneh, D., Lipton, R.J.: Algorithms for Black-Box Fields and their Application to Cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 283–297. Springer, Heidelberg (1996) ISSN 0302-9743Google Scholar
  3. 3.
    Maurer, U., Wolf, S.: Lower Bounds on Generic Algorithms in Groups. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer, Heidelberg (1998), ISSN 0302-9743, http://link.springer.de/link/service/series/0558/bibs/1403/14030072.htm CrossRefGoogle Scholar
  4. 4.
    Maurer, U.M., Wolf, S.: The relationship between breaking the Diffie-Hellman protocol and computing discrete logarithms. SIAM Journal on Computing 28(5), 1689–1721 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Nechaev, V.I.: К вопросу о сложности детерминировaнного aлгоритмa для дискретного логарифма. Российская Академия Наук. Математические Заметки 55(2), 91–101, 189 (1994) ISSN 0025-567X; Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes 55(2), 165–172 (1994) Google Scholar
  6. 6.
    Schnorr, C.P.: Security of DL-encryption and signatures against generic attacks-a survey. In: Public-Key Cryptography and Computational Number Theory Conference 2000, pp. 257–282 (2001), http://www.mi.informatik.uni-frankfurt.de/research/papers.html
  7. 7.
    Schnorr, C.P., Jakobsson, M.: Security Of Discrete Log Cryptosystems in the Random Oracle and the Generic Model. Technical report, Universität Frankfurt/Main and Bell Laboratories, Murray Hill, New Jersey (2000), The Mathematics of Public-Key Cryptography, The Fields Institute, Toronto, http://www.mi.informatik.uni-frankfurt.de/research/papers.html
  8. 8.
    Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997) ISSN 0302-9743Google Scholar
  9. 9.
    Strassen, V.: Berechnung und Programm. I. Acta Informatica 1, 320–335 (1972)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Joachim von zur Gathen
    • 1
  1. 1.University of PaderbornGermany

Personalised recommendations