A Proof System and a Decision Procedure for Equality Logic

  • Olga Tveretina
  • Hans Zantema
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2976)


Equality Logic with uninterpreted functions is used for proving the equivalense or refinement between systems (hardware verification, compiler translation, etc). Current approaches for deciding this type of formulas use a transformation of an equality formula to the propositional one of larger size, and then any standard SAT checker can be applied. We give an approach for deciding satisfiability of equality logic formulas (E-SAT) in conjunctive normal form. Central in our approach is a single proof rule called ER. For this single rule we prove soundness and completeness. Based on this rule we propose a complete procedure for E-SAT and prove its correctness. Applying our procedure on a variation of the pigeon hole formula yields a polynomial complexity contrary to earlier approaches to E-SAT.


Equality logic satisfiability resolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann, W.: Solvable cases of the decision problem. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1954)MATHGoogle Scholar
  2. 2.
    Barrett, C.W., Dill, D., Levitt, J.: Validity checking for combinations of theories with equality. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 187–201. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Bryant, R., German, S., Velev, M.: Processor verification using efficient reductions of the logic of uninterpreted functions to propositional log. ACM Transactions on Computational Logic 2(1), 93–134 (2001)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bryant, R., Velev, M.: Boolean satisfiability with transitivity constraints. ACM Transactions on Computational Logic 3(4), 604–627 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Burch, J., Dill, D.: Automated verification of pipelined microprocesoor control. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Goel, A., Sajid, K., Zhou, H., Aziz, A., Singhal, V.: BDD based procedures for a theory of equality with uninterpreted functions. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 244–255. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Groote, J., van de Pol, J.: Equational binary decision diagrams. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 161–178. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Pnueli, A., Rodeh, Y., Shtrichman, O., Siegel, M.: Deciding equality formulas by small domains instantiations. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 455–469. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Robinson, G., Wos, L.: Paramodulation and theorem-proving in first-order theories with equality. Machine inteligence 4, 135–150 (1969)MATHMathSciNetGoogle Scholar
  10. 10.
    Robinson, J.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12(1), 23–41 (1965)MATHCrossRefGoogle Scholar
  11. 11.
    Rodeh, Y., Shtrichman, O.: Finite instantiations in equivalence logic with uninterpreted functions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 144–154. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies in Constructive Mathematics and Mathematical Logic, Part 2, Consultant Bureau, New York-London, pp. 115–125 (1968)Google Scholar
  13. 13.
    Tveretina, O., Zantema, H.: A proof system and a decision procedure for equality logic. Tech. rep. (2003), http://www.tue.nl/bib/indexen.html
  14. 14.
    Zantema, H., Groote, J.F.: Transforming equality logic to propositional logic. In: Proceedings of 4th International Workshop on First-Order Theorem Proving (FTP 2003). Electronic Notes in Theoretical Computer Science, vol. 86 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Olga Tveretina
    • 1
  • Hans Zantema
    • 1
  1. 1.Department of Computer ScienceTU EindhovenEindhovenThe Netherlands

Personalised recommendations