A Separable Threshold Ring Signature Scheme
Abstract
We present a threshold ring signature scheme (spontaneous anonymous threshold signature scheme) that allows the use of both RSA-based and DL-based public keys at the same time. More generally, the scheme supports the mixture of public keys for any trapdoor-one-way type as well as three-move type signature schemes. This kind of ‘separability’ has useful applications in practice as a threshold ring signature is no longer limited to support only one particular type of public keys, as required by all the previous schemes. In the paper, we also show that the signature maintains the anonymity of participating signers unconditionally and is existential unforgeable against chosen message attacks in the random oracle model.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 2.Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proc. 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
- 3.Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 4.Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups (2002), http://www.di.ens.fr/+bresson (full version); Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)
- 5.Camenisch, J., Michels, M.: Separability and efficiency for generic group signature schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430. Springer, Heidelberg (1999)Google Scholar
- 6.Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
- 7.Desmedt, Y.: Some recent research aspects of threshold cryptography. In: Okamoto, E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 158–173. Springer, Heidelberg (1998)CrossRefGoogle Scholar
- 8.Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
- 9.Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). International Journal on Information Security 1(1), 36–63 (2001)Google Scholar
- 10.Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998)Google Scholar
- 11.Liu, J.K., Wei, V.K., Wong, D.S.: Linkable and culpable ring signatures. Manuscript (2003)Google Scholar
- 12.National Bureau of Standards FIPS Publication 186. Digital Signature Standard (1994)Google Scholar
- 13.Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–369. Springer, Heidelberg (1998)Google Scholar
- 14.Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)Google Scholar
- 15.Rabin, M.O.: Digitalized signatures as intractable as factorization. Technical Report MIT/LCS/TR-212, MIT Laboratory for Computer Science (January 1979)Google Scholar
- 16.Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 17.Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
- 18.Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
- 19.Williams, H.C.: A modification of the RSA public-key encryption procedure. IEEE Transactions on Information Theory IT-26(6), 726–729 (1980)zbMATHCrossRefGoogle Scholar
- 20.Wong, D.S., Fung, K., Liu, J.K., Wei, V.K.: On the RS-Code construction of ring signature schemes and a threshold setting of RST. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 34–46. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 21.Zhang, F., Kim, K.: ID-Based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)CrossRefGoogle Scholar