Grid Characteristics and Uses: A Grid Definition

  • Miguel L. Bote-Lorenzo
  • Yannis A. Dimitriadis
  • Eduardo Gómez-Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2970)


This paper discusses the concept of grid towards achieving a complete definition using main grid characteristics and uses found in literature. Ten definitions extracted from main literature sources have been studied allowing the extraction of grid characteristics while grid uses are defined in terms of the different types of application support provided by grids. A grid definition is proposed using these characteristics and uses. This definition may be very useful to determine the limits of the grid concept as well as to explore new application fields in grid computing. In this sense, the extracted characteristics are employed to determine the potential benefits a grid infrastructure may provide to Computer Supported Collaborative Learning applications.


Grid Infrastructure Computer Support Collaborative Learn Computer Support Collaborative Learn Computing Support Open Grid Service Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amin, K., Nijsure, S., von Laszewski, G.: Open Collaborative Grid Services Architecture (OCGSA). In: Proc. Euroweb 2002, Oxford, UK, pp. 101–107 (2002)Google Scholar
  2. 2.
    Asensio, J.I., Dimitriadis, Y.A., Heredia, M., Martínez, A., Álvarez, F.J., Blasco, M.T., Osuna, C.: From collaborative learning patterns to component-based CSCL application. In: Proc. ECSCW 2003 workshop From Good Practices to Patterns, Helsinki, Finland (2003)Google Scholar
  3. 3.
    Crook, C.: Computers and the Collaborative Experience of Learning. Routeledge, London (1994)Google Scholar
  4. 4.
    DeFanti, T., Foster, I., Papka, M., Stevens, R., Kuhfuss, T.: Overview of the I-WAY: Wide Area Visual Supercomputing. Int. J. Supercomp. App. 10(2), 123–130 (1996)CrossRefGoogle Scholar
  5. 5.
    Dillenbourg, P.: Collaborative Learning: Cognitive and Computational Approaches. Elsevier Science, Oxford (1999)Google Scholar
  6. 6.
    Foster, I.: Computational Grids. In: [10], pp. 15–52 (1998)Google Scholar
  7. 7.
    Foster, I.: What Is the Grid? A Three Point Checklist. Grid Today 1(6) (2002)Google Scholar
  8. 8.
    Foster, I., Kesselman, C.: Globus: a Metacomputing Infrastructure Toolkit. Int. J. Supercomp. App. 11(2), 115–128 (1997)CrossRefGoogle Scholar
  9. 9.
    Foster, I., Kesselman, C.: The Globus Project: a Status Report. In: Proc. IPPS/SPDP 1998 Workshop on Heterogeneous Computing, pp. 4–18 (1998)Google Scholar
  10. 10.
    Foster, I., Kesselman, C.: The Grid: Blueprint for a Future Computing Infrastructure. Morgan Kaufmann, San Francisco (1998)Google Scholar
  11. 11.
    Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. Int. J. Supercomp. App. 15(3), 200–222 (2001)CrossRefGoogle Scholar
  12. 12.
    Foster, I., Kesselman, C., Nick, J., Tuecke, S.: Grid Services for Distributed System Integration. Computer 35(6), 37–46 (2002)CrossRefGoogle Scholar
  13. 13.
    Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: an Open Grid Services Architecture for Distributed Systems Integration. Global Grid Forum technical report (2002)Google Scholar
  14. 14.
    Grimshaw, A.: What is a Grid? Grid Today 1(26) (2002)Google Scholar
  15. 15.
    Grimshaw, A., Wulf, W.: The Legion Vision of a Worldwide Virtual Computer. Comm. of the ACM 40(1), 39–47 (1997)CrossRefGoogle Scholar
  16. 16.
    Grimshaw, A., Weissman, J., West, E., Loyot Jr., E.: Metasystems: an Approach Combining Parallel Processing and Distributed Heterogeneous Computing System. Parallel and Distributed Computing 21(3), 257–270 (1994)CrossRefGoogle Scholar
  17. 17.
    Kapadia, N., Figueiredo, R., Fortes, J.: PUNCH: Web portal for running tools. IEEE Micro. 20(3), 38–47 (2000)CrossRefGoogle Scholar
  18. 18.
    Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of grid resource management systems for distributed computing. Int. J. of Software Practice 32(2), 135–164 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Lyster, P., Bergman, L., Li, P., Stanfill, D., Crippe, B., Blom, R., Okaya, D.: CASA Gigabit Supercomputing Network: CALCRUST Three-Dimensional Real-Time Multi-Dataset Rendering. In: Proc. Supercomputing 1992, Minneapolis (1992)Google Scholar
  20. 20.
    Ramamurthy, M., Wilhelmson, R., Pea, R., Louis, M., Edelson, D.: CoVis: A National Science Education Collaboratory. In: Proc. American Meteorological Society 4th Conference on Education, Dallas, TX (1995)Google Scholar
  21. 21.
    Smarr, L., Catlett, C.: Metacomputing. Comm. of the ACM 35(6), 44–52 (1992)CrossRefGoogle Scholar
  22. 22.
    Stevens, R., Woodward, P., DeFanti, T., Catlett, C.: From the I-WAY to the National Technology Grid. Comm. of the ACM 40(11), 50–60 (1997)CrossRefGoogle Scholar
  23. 23.
    Wasson, B.: Computer Supported Collaborative Learning: an Overview. Lecture notes IVP 482, University of Bergen, Norway (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Miguel L. Bote-Lorenzo
    • 1
  • Yannis A. Dimitriadis
    • 1
  • Eduardo Gómez-Sánchez
    • 1
  1. 1.School of Telecommunications EngineeringUniversity of ValladolidValladolidSpain

Personalised recommendations