Dynamic-Data-Driven Real-Time Computational Mechanics Environment

  • John Michopoulos
  • Charbel Farhat
  • Elias Houstis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3038)


The proliferation of sensor networks in various areas of technology has enabled real-time behavioral monitoring of various physical systems in various length and time scales. The opportunity to use these data dynamically for improving speed, accuracy, and general performance of predictive behavior modeling simulation is of paramount importance. The present paper identifies enabling modeling methods and computational strategies that are critical for achieving real-time simulation response of very large and complex systems. It also discusses our choices of these technologies in the context of sample multidisciplinary computational mechanics applications.


Proper Orthogonal Decomposition Computational Strategy Reduce Order Model Speed Index Computational Decision Support System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Michopoulos, J., Tsompanopoulou, P., Houstis, E., Rice, J., Farhat, C., Lesoinne, M., Lechenault, F.: DDEMA: A Data Driven Environment for Multiphysics Applications. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2660, pp. 309–318. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Michopoulos, J., Tsompanopoulou, P., Houstis, E., Rice, J., Farhat, C., Lesoinne, M., Lechenault, F.: Design Architecture of a Data Driven Environment for Multiphysics Applications. In: Proceedings of DETC 2003, ASME DETC2003/CIE Chicago IL, September 2-6 2003, Paper No DETC2003/CIE-48268 (2003)Google Scholar
  3. 3.
    Michopoulos, J., Tsompanopoulou, P., Houstis, E., Farhat, C., Lesoinne, M., Rice, J., Joshi, A.: On a Data Driven Environment for Multiphysics Applications. Future Generation Computer Systems (2004) (in-print)Google Scholar
  4. 4.
    Michopoulos, J., Tsompanopoulou, P., Houstis, E., Farhat, C., Lesoinne, M., Rice, J.: Design of a Data-Driven Environment for Multi-field and Multi-Domain Applications. In: Darema, F. (ed.) Dynamic Data Driven Applications Systems, Kluwer Academic Publishers, Netherlands (2004) (in-print)Google Scholar
  5. 5.
    DDEMA-group, Taxonomic Classification of Reduced Order Models (2004), available from
  6. 6.
    Farhat, C., Chandesris, M.: Time-Decomposed Parallel Time-Integrators: Theory and Feasibility Studies for Fluid, Structure, and Fluid-Structure Applications. Internat. J. Numer. Meths., Engrg. 58, 1397–1434 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lions, J.L., Maday, Y., Turinici, G.: Résolution d’EDP par un Schéma en Temps “Pararéel”. C. R. Acad. Sci. Paris, Serie I Math. 332, 661–668 (2001)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Michopoulos, J.G., Mast, P.W., Badaliance, R., Wolock, I.: Health Monitoring of smart structures by the use of dissipated energy. In: Carman, G.P., Garcia, E. (eds.) Proc. ASME 1993 WAM on Adaptive structures and material systems, vol. AD-35, pp. 457–462. ASME (1993)Google Scholar
  9. 9.
    Michopoulos, J.: Computational and Mechatronic Automation of Multiphysics Research for Structural and Material Systems, Invited paper in ”Recent advances in Composite Materials” in honor of S.A. Paipetis, pp. 9–21. Kluwer Academic Publishing, Boston (2003)Google Scholar
  10. 10.
    Mast, P., Nash, G., Michopoulos, J., Thomas, R., Wolock, I., Badaliance, R.: Characterization of strain-induced damage in composites based on the dissipated energy density: Part I. Basic scheme and formulation. J. of Theor. Appl. Fract. Mech. 22, 71–96 (1995)CrossRefGoogle Scholar
  11. 11.
    Yates, E.: AGARD Standard Aeroelastic Configuration for Dynamic Response, Candidate Configuration I. – Wing 445.6, NASA TM-100492 (1987)Google Scholar
  12. 12.
    Lesoinne, M., Farhat, C.: A Higher-Order Subiteration Free Staggered Algorithm for Nonlinear Transient Aeroelastic Problems. AIAA Journal 36(9), 1754–1756 (1998)CrossRefGoogle Scholar
  13. 13.
    Lieu, T., Lesoine, M.: Parameter Adaptation of Reduced Order Models for Three- Dimensional Flutter Analysis. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • John Michopoulos
    • 1
  • Charbel Farhat
    • 2
  • Elias Houstis
    • 3
    • 4
  1. 1.Special Projects Group, Code 6303, U.S. Naval Research LaboratoryU.S.A.
  2. 2.Dept. of Aerospace Engineering SciencesUniversity of Colorado at BoulderU.S.A
  3. 3.Computer Sciences DepartmentPurdue UniversityU.S.A.
  4. 4.Dept. of Comp. Eng. and TelecommunicationsUniversity of ThessalyGreece

Personalised recommendations