Advertisement

An Experiment for the Virtual Traffic Laboratory: Calibrating Speed Dependency on Heavy Traffic

A Demonstration of a Study in a Data Driven Traffic Analysis
  • Arnoud Visser
  • Joost Zoetebier
  • Hakan Yakali
  • Bob Hertzberger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3038)

Abstract

In this paper we introduce an application for the Virtual Traffic Laboratory. We have seamlessly integrated the analyses of aggregated information from simulation and measurements in a Matlab environment, in which one can concentrate on finding the dependencies of the different parameters, select subsets in the measurements, and extrapolate the measurements via simulation. Available aggregated information is directly displayed and new aggregate information, produced in the background, is displayed as soon as it is available.

Keywords

Grid Computing Average Speed Aggregate Information Virtual Laboratory Object Oriented Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kerner, B.S., Rehborn, H.: Experimental properties of complexity in traffic flow. Physical Review E 53(5) (May 1996)Google Scholar
  2. 2.
    Neubert, L., et al.: Single-vehicle data of highway traffic: A statistical analysis. Physical Review E 60(6) (December 1999)Google Scholar
  3. 3.
    Jörgensohn, T., Irmscher, M., Willumeit, H.-P.: Modelling Human Behaviour, a Must for Human Centred Automation in Transport Systems? In: Proc. BASYS 2000, Berlin, Germany, September 27-29, December 1999 (2000)Google Scholar
  4. 4.
    Nagel, K., Rickert, M.: Dynamic traffic assignment on parallel computers in TRANSIMS. Future Generation Computer Systems 17, 637–648 (2001)CrossRefGoogle Scholar
  5. 5.
    Visser, A., et al.: An hierarchical view on modelling the reliability of a DSRC-link for ETC applications. IEEE Transactions on Intelligent Transportation Systems 3(2) (June 2002)Google Scholar
  6. 6.
    Thain, D., Tannenbaum, T., Livny, M.: Condor and the Grid. In: Grid Computing: Making The Global Infrastructure a Reality, John Wiley, Chichester (2003) ISBN: 0-470-85319-0Google Scholar
  7. 7.
    Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)Google Scholar
  8. 8.
    Douglas, C.C.: Virtual Telemetry for Dynamic Data-Driven Application Simulations. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 279–288. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Afsarmanesh, H., et al.: VLAM: A Grid-Based virtual laboratory. Scientific Programming (IOS Press), Special Issue on Grid Computing 10(2), 173–181 (2002)Google Scholar
  10. 10.
  11. 11.
    Belloum, A., et al.: The VL Abstract Machine: A Data and Process Handling System on the Grid. In: Proc. HPCN Europe 2001 (2001)Google Scholar
  12. 12.
    Kaletas, E.C., Afsarmanesh, H., Hertzberger, L.O.: Modelling Multi- Disciplinary Scientific Experiments and Information. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS, vol. 2869, pp. 1043–1050. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    van Halderen, B.: Virtual Laboratory Abstract Machine Model for Module Writers. Internal Design Document (July 2000), see http://www.dutchgrid.nl/VLAM–G/colla/proto/berry_running/
  14. 14.
    Visser, A., et al.:Google Scholar
  15. 15.
    Tampére, C., van der Vlist, M.: A Random Traffic Generator for Microscopic Simulation. In: Proceedings 78th TRB Annual Meeting, Washington DC, USA (Januari 1999)Google Scholar
  16. 16.
    Frey, J., et al.: Condor-G: A Computation Management Agent for Multi- Institutional Grids. In: Proceedings of the Tenth IEEE Symposium on High Performance Distributed Computing (HPDC10) San Francisco, California, August 7-9 (2001)Google Scholar
  17. 17.
    Andreoni, W., Curioni, A.: New Advances in Chemistry and Material Science with CPMD and Parallel Computing. Parallel Computing 26, 819 (2000)zbMATHCrossRefGoogle Scholar
  18. 18.
    Erwin, D.W., Snelling, D.F.: UNICORE: A Grid Computing Environment. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 825–839. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Arnoud Visser
    • 1
  • Joost Zoetebier
    • 1
  • Hakan Yakali
    • 1
  • Bob Hertzberger
    • 1
  1. 1.Informatics InstituteUniversity of Amsterdam 

Personalised recommendations