Kernel Maximum Likelihood Hebbian Learning

  • Jos Koetsier
  • Emilio Corchado
  • Donald MacDonald
  • Juan Corchado
  • Colin Fyfe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3037)


We present a novel method based on a recently proposed extension to a negative feedback network which uses simple Hebbian learning to self-organise called Maximum Likelihood Hebbian learning [2]. We use the kernel version of the ML algorithm on data from a spectroscopic analysis of a stained glass rose window in a Spanish cathedral. It is hoped that in classifying the origin and date of each segment it will help in the restoration of this and other historical stain glass windows.


Feature Space Maximum Likelihood Method Kernel Version General Cost Function Topology Preservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Charles, D., Fyfe, C.: Modelling Multiple Cause Structure using Rectification con-Straints. Network: Computation in Neural Systems 9, 167–182 (1998)zbMATHCrossRefGoogle Scholar
  2. 2.
    Corchado, E., Fyfe, C.: Maximum Likelihood Hebbian Rules. In: Tenth European Symposium on Artificial Neural Networks, ESANN 2002, pp. 143–148 (2002)Google Scholar
  3. 3.
    Fyfe, C.P.: Properties of Interneurons. In: From Neurobiology to Real World Computing, ICANN 1993, pp. 183–188 (1993)Google Scholar
  4. 4.
    Fyfe, C.: Introducing Asymmetry into Interneuron learning. Neural Computation 7(6), 1167–1181 (1995)CrossRefGoogle Scholar
  5. 5.
    Fyfe, C.: Radial Feature Mapping. In: International Conference on Artificial Neural Networks, ICANN 1995 (October 1995)Google Scholar
  6. 6.
    Fyfe, C.: A Comparative Study of Two Neural Methods of Exploratory Projection Pursuit. Neural Networks 10(2), 257–262 (1997)CrossRefGoogle Scholar
  7. 7.
    Fyfe, C., Baddeley, R.: Non-linear Data Dtructure Extraction using Simple Hebbian Networks. Biological Cybernetics 72(6), 533–541 (1995)zbMATHCrossRefGoogle Scholar
  8. 8.
    Fyfe, C., Charles, D.: Using Noise to Form a Minimal Overcomplete Basis. In: Seventh International Conference on Artificial Neural Networks, ICANN 1999 (1999)Google Scholar
  9. 9.
    Lopez-Gejo, J., Colina, A., Lopez-Palacios, J., Bravo, P.: Principal Components Analysis in the Classification of Medieval Glasses by Scanning Electron Microscopy Coupled with Energy Dispersive X-ray Analysis (2003) (submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jos Koetsier
    • 1
  • Emilio Corchado
    • 2
  • Donald MacDonald
    • 1
  • Juan Corchado
    • 3
  • Colin Fyfe
    • 1
  1. 1.Applied Computation Intelligence Research UnitUniversity of Paisley
  2. 2.Departamento de Ingenieria CivilUniversidad de BurgosSpain
  3. 3.Departamento de Informática y AutomáticaUniversidad de SalamancaSpain

Personalised recommendations