Load Balancing Issues for a Multiple Front Method

  • C. Denis
  • J. P. Boufflet
  • P. Breitkopf
  • M. Vayssade
  • B. Glut
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3037)


We investigate a load balancing strategy that uses a model of the computational behavior of a parallel solver to correct an initial partition of data.


Domain Decomposition Computation Tree Interface Problem Initial Partition Interface Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Duff, I., Erisman, A., Reid, J.: Direct Methods for Sparse Matrices. Monographs on Numerical Analysis. Clarendon Press, Oxford (1986)zbMATHGoogle Scholar
  2. 2.
    Duff, I.S., Scott, J.A.: MA42 – A new frontalco de for solving sparse unsymmetric systems, technical report ral93-064. Technical report, Chilton, Oxon, England (1993)Google Scholar
  3. 3.
    Amestoy, P.R., Duff, I.S., Koster, J.Y.L.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 15–41 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Scott, J.: The design of a parallel frontal solver, technical report ral-tr99-075. Technical report, Rutherford Appleton Laboratory (1999) Google Scholar
  5. 5.
    Escaig, Y., Vayssade, M., Touzot, G.: Une méthode de décomposition de domaines multifrontale multiniveaux. Revue Européenne des Eléments Finis 3, 311–337 (1994)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Breitkopf, P., Escaig, Y.: Object oriented approach and distributed finite element simulations. Revue Européenne des Eléments Finis. 7, 609–626 (1998)zbMATHGoogle Scholar
  7. 7.
    Karypis, G., Kumar, V.: Metis: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Technical report, University of Minnesota, Department of Computer Science (1998)Google Scholar
  8. 8.
    Hendrickson, B., Leland, R.: The chaco user’s guide, version 2.0. Technical report, Sandia NationalLab oratories (1995) Google Scholar
  9. 9.
    Boufflet, J., Breitkopf, P., Denis, C., Rassineux, A., Vayssade, M.: Optimalel ement numbering schemes for direct solution of mechanical problems using domain decomposition method. In: 4th ECCOMAS Solid Mechanics Conference, Espagne (2000)Google Scholar
  10. 10.
    Hendrickson, B.: Graph partitioning and parallel solvers: Has the emperor no clothes? In: Ferreira, A., Rolim, J.D.P., Teng, S.-H. (eds.) IRREGULAR 1998. LNCS, vol. 1457, pp. 218–225. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Hendrickson, B.: Load balancing fictions, falsehoods and fallacies. Applied Mathematical Modelling 25, 99–108 (2000)zbMATHCrossRefGoogle Scholar
  12. 12.
    Boufflet, J., Breitkopf, P., Denis, C., Rassineux, A., Vayssade, M.: Equilibrage en volume de calcul pour un solveur parallèle multi-niveau. In: 6ème Colloque Nationalen Calculdes Structures, Giens, France, pp. 349–356 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • C. Denis
    • 1
  • J. P. Boufflet
    • 1
  • P. Breitkopf
    • 2
  • M. Vayssade
    • 2
  • B. Glut
    • 3
  1. 1.Department of Computing EngineeringUMR 6599 Heudiasyc, Compiègne University of TechnologyCompiègne cedexFrance
  2. 2.Department of Mechanical EngineeringUMR 6066 Roberval, Compiègne University of TechnologyCompiègne cedexFrance
  3. 3.Institute of Computer ScienceAGH University of Science and TechnologyCracowPoland

Personalised recommendations