Abstract

The systems biology community is building increasingly complex models and simulations of cells and other biological entities. In doing so the community is beginning to look at alternatives to traditional representations such as those provided by ordinary differential equations (ODE). Making use of the object-oriented (OO) paradigm, the Unified Modeling Language (UML) and Real-time Object-Oriented Modeling (ROOM) visual formalisms, we describe a simple model that includes membranes with lipid bilayers, multiple compartments including a variable number of mitochondria, substrate molecules, enzymes with reaction rules, and metabolic pathways. We demonstrate the validation of the model by comparison with Gepasi and comment on the reusability of model components.

Keywords

bioinformatics agent-based modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)CrossRefGoogle Scholar
  2. 2.
    Hedley, W., et al.: A short introduction to CellML. Philosophical Transactions - Mathematical Physical and Engineering Sciences 359, 1073–1089 (2001)MATHCrossRefGoogle Scholar
  3. 3.
    Tomita, M., et al.: E-Cell: software environment for whole-cell simulation. Bioinformatics 15, 72–84 (1999)CrossRefGoogle Scholar
  4. 4.
    Mendes, P.: Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends. Biochem. Sci. 22, 361–363 (1997)CrossRefGoogle Scholar
  5. 5.
    Sauro, H.: JARNAC: a system for interactive metabolic analysis. In: Animating the Cellular Map 9th International BioThermoKinetics Meeting, University Press (2000) ISBN 0-7972-0776-7Google Scholar
  6. 6.
    Morton-Firth, C., Bray, D.: Predicting Temporal Fluctuations in an Intracellular Signalling Pathway. Journal of Theoretical Biology 192, 117–128 (1998)CrossRefGoogle Scholar
  7. 7.
    Loew, L., Schaff, J.: The Virtual Cell: a software environment for computational cell biology. TRENDS in Biotechnology 19, 401–406 (2001)CrossRefGoogle Scholar
  8. 8.
    Khan, S., et al.: A Multi-Agent System for the Quantitative Simulation of Biological Networks. In: AAMAS 2003, pp. 385–392 (2003)Google Scholar
  9. 9.
    Gonzalez, P., et al.: Cellulat: an agent-based intracellular signalling model. BioSystems 68, 171–185 (2003)CrossRefGoogle Scholar
  10. 10.
    Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of Computer Programming 8, 231–274 (1987)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Harel, D.: On Visual Formalisms. Communications of the ACM 31, 514–530 (1988)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Harel, D.: A Grand Challenge for Computing: Full Reactive Modeling of a Multi-Cellular Animal. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 2–2. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Kam, N., Harel, D., et al.: Formal Modeling of C. elegans Development: A Scenario-Based Approach. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 4–20. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Selic, B., Gullekson, G., Ward, P.: Real-time Object-Oriented Modeling. John Wiley & Sons, New York (1994)MATHGoogle Scholar
  15. 15.
    Becker, W., Reece, J., Poenie, M.: The World of the Cell, 3rd edn. Benjamin/Cummings, Menlo Park, CA (1996)Google Scholar
  16. 16.
    Harvey, I., Bossomaier, T.: Time Out of Joint: Attractors in Asynchronous Random Boolean Networks. In: ECAL 1997 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ken Webb
    • 1
  • Tony White
    • 1
  1. 1.School of Computer ScienceCarleton UniversityCanada

Personalised recommendations