Advertisement

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

  • Jean-Sébastien Coron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3027)

Abstract

At Eurocrypt ‘96, Coppersmith proposed an algorithm for finding small roots of bivariate integer polynomial equations, based on lattice reduction techniques. But the approach is difficult to understand. In this paper, we present a much simpler algorithm for solving the same problem. Our simplification is analogous to the simplification brought by Howgrave-Graham to Coppersmith’s algorithm for finding small roots of univariate modular polynomial equations. As an application, we illustrate the new algorithm with the problem of finding the factors of n=pq if we are given the high order 1/4 log2 n bits of p.

References

  1. 1.
    Boneh, D., Durfee, G.: Crypanalysis of RSA with private key d less than N0.292. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 1. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Boneh, D., Durfee, G., Howgrave-Graham, N.A.: Factoring n = p r q for large r. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 326. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Coppersmith, D.: Finding a Small Root of a Univariate Modular Equation. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178–189. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Coppersmith, D.: Small solutions to polynomial equations, and low exponent vulnerabilities. J. of Cryptology 10(4), 233–260 (1997); Revised version of two articles of Maurer, U.M. (ed.): EUROCRYPT 1996. LNCS, vol. 1070, pp. 233–260. Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Coppersmith, D.: Finding small solutions to small degree polynomials. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, p. 20. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Howgrave-Graham, N.A.: Finding small roots of univariate modular equations revisited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Jutla, C.S.: On finding small solutions of modular multivariate polynomial equations. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 158–170. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Ann. 261, 513–534 (1982)Google Scholar
  10. 10.
    Maurer, U.: Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters. Journal of Cryptology 8(3), 123–155 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mignotte, M.: An inequality about factors of polynomials. Math. Comp. 28, 1153–1157 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, p. 146. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 239. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Shoup, V.: Number Theory C++ Library (NTL) version 5.3.1, Available at http://www.shoup.net

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jean-Sébastien Coron
    • 1
  1. 1.Gemplus Card InternationalIssy-les-MoulineauxFrance

Personalised recommendations