Advertisement

Abstract

Dining cryptographers networks (or DC-nets) are a privacy-preserving primitive devised by Chaum for anonymous message publication. A very attractive feature of the basic DC-net is its non-interactivity. Subsequent to key establishment, players may publish their messages in a single broadcast round, with no player-to-player communication. This feature is not possible in other privacy-preserving tools like mixnets. A drawback to DC-nets, however, is that malicious players can easily jam them, i.e., corrupt or block the transmission of messages from honest parties, and may do so without being traced.

Several researchers have proposed valuable methods of detecting cheating players in DC-nets. This is usually at the cost, however, of multiple broadcast rounds, even in the optimistic case, and often of high computational and/or communications overhead, particularly for fault recovery.

We present new DC-net constructions that simultaneously achieve non-interactivity and high-probability detection and identification of cheating players. Our proposals are quite efficient, imposing a basic cost that is linear in the number of participating players. Moreover, even in the case of cheating in our proposed system, just one additional broadcast round suffices for full fault recovery. Among other tools, our constructions employ bilinear maps, a recently popular cryptographic technique for reducing communication complexity.

Keywords

anonymity dining cryptographers mix network non-interactive privacy 

References

  1. 1.
    von Ahn, L., Bortz, A., Hopper, N.J.: k-anonymous message transmission. In: Proc. of ACM CCS 2003, pp. 122–130. ACM Press, New York (2003)Google Scholar
  2. 2.
    Bos, J., den Boer, B.: Detection of disrupters in the DC protocol. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 320–327. Springer, Heidelberg (1990)Google Scholar
  3. 3.
    Boucher, P., Shostack, A., Goldberg, I.: Freedom Systems 2.0 architecture. Zero Knowledge Systems, Inc. White Paper (December 2000), Available at http://freehaven.net/anonbib/
  4. 4.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proc. of ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. SIAM J. of Computing 32(3), 586–615 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–541. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Cramer, R., Damgaard, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM 24(2), 84–88 (1981)CrossRefGoogle Scholar
  11. 11.
    Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untraceability. Journal of Cryptology 1(1), 65–75 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: design of a type III anonymous remailer protocol. In: IEEE Symposium on Security and Privacy 2003, pp. 2–15 (2003)Google Scholar
  14. 14.
    Dingledine, R.: Anonymity bibliography, Available on the web at http://freehaven.net/anonbib/
  15. 15.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  16. 16.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)Google Scholar
  17. 17.
    Goldschlag, D., Reed, M., Syverson, P.: Onion routing. Communications of the ACM 42(2), 39–41 (1999)CrossRefGoogle Scholar
  18. 18.
    Jakobsson, M., Juels, A., Rivest, R.: Making mix nets robust for electronic voting by randomized partial checking. In: Proc of USENIX 2002 (2002)Google Scholar
  19. 19.
    Reiter, M., Rubin, A.: Anonymous web transactions with Crowds. Communications of the ACM 42(2), 32–38 (1999)CrossRefGoogle Scholar
  20. 20.
    Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Waidner, M., Pfitzmann, B.: The Dining Cryptographers in the disco: unconditional sender and recipient untraceability with computationally secure serviceability. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, p. 690. Springer, Heidelberg (1990)Google Scholar
  22. 22.
    Waidner, M.: Unconditional sender and recipient untraceability in spite of active attacks. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 302–319. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Philippe Golle
    • 1
  • Ari Juels
    • 2
  1. 1.Palo Alto Research CenterPalo AltoUSA
  2. 2.RSA LaboratoriesBedfordUSA

Personalised recommendations