Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles

  • Dan Boneh
  • Xavier Boyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3027)

Abstract

We construct two efficient Identity Based Encryption (IBE) systems that are selective identity secure without the random oracle model. Selective identity secure IBE is a slightly weaker security model than the standard security model for IBE. In this model the adversary must commit ahead of time to the identity that it intends to attack, whereas in the standard model the adversary is allowed to choose this identity adaptively. Our first secure IBE system extends to give a selective identity Hierarchical IBE secure without random oracles.

References

  1. [BB04]
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. [BBR99]
    Biham, E., Boneh, D., Reingold, O.: Breaking generalized Diffie- Hellman modulo a composite is no easier than factoring. IPL 70, 83–87 (1999)MATHCrossRefMathSciNetGoogle Scholar
  3. [BF01]
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. [BF03]
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM J. of Computing 32(3), 586–615 (2003)MATHCrossRefMathSciNetGoogle Scholar
  5. [BR93]
    Bellare, M., Rogaway, P.: Random oracle are practical: A paradigm for designing efficient protocols. In: Proceedings of the First ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  6. [BS03]
    Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Contemporary Mathematics 324, 71–90 (2003)MathSciNetGoogle Scholar
  7. [CHK03]
    Canetti, R., Halevi, S., Katz, J.: A forward-secure publickey encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, Springer, Heidelberg (2003)Google Scholar
  8. [CHK04]
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004), http://eprint.iacr.org/2003/182/ CrossRefGoogle Scholar
  9. [Coc01]
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Proceedings of the 8th IMA International Conference on Cryptography and Coding, pp. 26–28 (2001)Google Scholar
  10. [CS98]
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attacks. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  11. [GS02]
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. [HL02]
    Horwitz, J., Lynn, B.: Towards hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. [Jou00]
    Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. [Lin03]
    Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 241–254. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. [Lys02]
    Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 597. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. [MSK02]
    Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fundamentals E85-A(2), 481–484 (2002)Google Scholar
  17. [MSW96]
    Tsudik, G., Steiner, M., Waidner, M.: Diffie-Hellman key distribution extended to groups. In: Proceedings 1996 ACM Conference on Computer and Communications Security (1996)Google Scholar
  18. [NR97]
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: Proceeings 38th IEEE Symp. on Foundations of Computer Science, pp. 458–467 (1997)Google Scholar
  19. [NY90]
    Naor, M., Yung, M.: Public key cryptosystems provable secure against chosen ciphertext attacks. In: STOC 1990, pp. 427–437. ACM, New York (1990)CrossRefGoogle Scholar
  20. [Sah99]
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: Proceeings 40 IEEE Symp. on Foundations of Computer Science (1999)Google Scholar
  21. [Sha84]
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dan Boneh
    • 1
  • Xavier Boyen
    • 2
  1. 1.Computer Science DepartmentStanford UniversityStanfordUSA
  2. 2.Voltage SecurityPalo Alto

Personalised recommendations