Detecting Keypoints with Stable Position, Orientation, and Scale under Illumination Changes
Abstract
Local feature approaches to vision geometry and object recognition are based on selecting and matching sparse sets of visually salient image points, known as ‘keypoints’ or ‘points of interest’. Their performance depends critically on the accuracy and reliability with which corresponding keypoints can be found in subsequent images. Among the many existing keypoint selection criteria, the popular Förstner-Harris approach explicitly targets geometric stability, defining keypoints to be points that have locally maximal self-matching precision under translational least squares template matching. However, many applications require stability in orientation and scale as well as in position. Detecting translational keypoints and verifying orientation/scale behaviour post hoc is suboptimal, and can be misleading when different motion variables interact. We give a more principled formulation, based on extending the Förstner-Harris approach to general motion models and robust template matching. We also incorporate a simple local appearance model to ensure good resistance to the most common illumination variations. We illustrate the resulting methods and quantify their performance on test images.
Keywords
keypoint point of interest corner detection feature based vision Förstner-Harris detector template matching vision geometry object recognitionReferences
- 1.Baker, S., Nayar, S., Murase, H.: Parametric feature detection. Int. J. Computer Vision 27(1), 27–50 (1998)CrossRefGoogle Scholar
- 2.Beaudet, P.R.: Rotationally invariant image operators. In: Int. Conf. Pattern Recognition, pp. 579–583 (1978)Google Scholar
- 3.Deriche, R., Blaszka, T.: Recovering and characterizing image features using an efficient model based approach. In: Int. Conf. ComputerVision & Pattern Recognition, pp. 530–535 (1993)Google Scholar
- 4.Deriche, R., Giraudon, G.: A computational approach for corner and vertex detection. Int. J. Computer Vision 10(2), 101–124 (1993)CrossRefGoogle Scholar
- 5.Faugeras, O., Luong, Q.-T., Papadopoulo, T.: The Geometry of Multiple Images. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
- 6.Förstner, W.: On the geometric precision of digital correlation. Int. Arch. Photogrammetry & Remote Sensing 24(3), 176–189 (1982)Google Scholar
- 7.Förstner, W.: A feature-based correspondence algorithm for image matching. Int. Arch. Photogrammetry & Remote Sensing 26(3/3), 150–166 (1986)Google Scholar
- 8.Förstner, W.: A framework for low-level feature extraction. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. II 383–394. Springer, Heidelberg (1994)CrossRefGoogle Scholar
- 9.Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: ISPRS Intercommission Workshop, Interlaken (June 1987)Google Scholar
- 10.Grün, A.: Adaptive least squares correlation—concept and first results, March 1984. Intermediate Research Report to Helava Associates, p. 13. Ohio State University (1984)Google Scholar
- 11.Grün, A.: Least squares matching: A fundamental measurement algorithm. In: Close Range Photogrammetry and Machine Vision, pp. 217–255. Whittles Publishing, Caithness (1996)Google Scholar
- 12.Grün, A., Baltsavias, E.P.: Adaptive least squares correlation with geometrical constraints. In: SPIE Computer Vision for Robots, Cannes, vol. 595, pp. 72–82 (1985)Google Scholar
- 13.Hager, G., Belhumeur, P.: Efficient region tracking with parametric models of geometry and illumination. IEEE Trans. Pattern Analysis & Machine Intelligence 20(10), 1025–1039 (1998)CrossRefGoogle Scholar
- 14.Hannah, M.J.: Computer Matching of Areas in Stereo Images. Ph.D. Thesis, Stanford University, AIM Memo 219 (1974)Google Scholar
- 15.Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
- 16.Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
- 17.Kitchen, L., Rosenfeld, A.: Gray-level corner detection. Patt. Rec. Lett. 1, 95–102 (1982)CrossRefGoogle Scholar
- 18.Kovesi, P.: Image features from phase congruency. Videre: A Journal of Computer Vision Research 1(3) (1999)Google Scholar
- 19.Laganière, R.: Morphological corner detection. In: Int. Conf. Computer Vision, pp. 280–285 (1998)Google Scholar
- 20.Lowe, D.: Object recognition from local scale-invariant features. In: Int. Conf. Computer Vision, pp. 1150–1157 (1999)Google Scholar
- 21.Lowe, D.: Local feature view clustering for 3d object recognition. In: Int. Conf. Computer Vision & Pattern Recognition, pp. 682–688 (2001)Google Scholar
- 22.Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI (1981)Google Scholar
- 23.Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Int. Conf. Computer Vision, pp. 525–531 (2001)Google Scholar
- 24.Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. I. 128–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 25.Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: Int. Conf. Computer Vision & Pattern Recognition (2003)Google Scholar
- 26.Moravec, H.P.: Towards automatic visual obstacle avoidance. In: IJCAI, pp. 584 (1977)Google Scholar
- 27.Morrone, M.C., Owens, R.A.: Feature detection from local energy. Patt. Rec. Lett. 6, 303–313 (1987)CrossRefGoogle Scholar
- 28.Noble, J.A.: Finding corners. Image & Vision Computing 6(2), 121–128 (1988)CrossRefGoogle Scholar
- 29.Reisfeld, D.: The constrained phase congruency feature detector: Simultaneous localization, classification, and scale determination. Patt. Rec. Lett. 17, 1161–1169 (1996)CrossRefGoogle Scholar
- 30.Robbins, B., Owens, R.: 2d feature detection via local energy. Image &Vision Computing 15, 353–368 (1997)CrossRefGoogle Scholar
- 31.Rohr, K.: Localization properties of direct corner detectors. J. Mathematical Imaging & Vision 4(2), 139–150 (1994)CrossRefMathSciNetGoogle Scholar
- 32.Schaffalitzky, F., Zisserman, A.: Viewpoint invariant texture matching and wide baseline stereo. In: Int. Conf. Computer Vision, Vancouver, pp. 636–643 (2001)Google Scholar
- 33.Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Computer Vision 37(2), 151–172 (2000)zbMATHCrossRefGoogle Scholar
- 34.Shi, J., Tomasi, C.: Good features to track. In: Int. Conf. Computer Vision & Pattern Recognition, Seattle, pp. 593–600 (1994)Google Scholar
- 35.Smith, S.M., Brady, J.M.: SUSAN - a new approach to low level image processing. Int. J. Computer Vision 23(1), 45–78 (1997)CrossRefGoogle Scholar
- 36.Toews, M., Arbel, T.: Entropy-of-likelihood feature selection for image correspondence. In: Int. Conf. Computer Vision, Nice, France, pp. 1041–1047 (2003)Google Scholar
- 37.Torr, P.H.S., Zisserman, A.: Feature based methods for structure and motion estimation. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 278–294. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 38.Zuniga, O., Haralick, R.: Corner detection using the facet model. In: Int. Conf. Computer Vision & Pattern Recognition, pp. 30–37 (1983)Google Scholar