Integral Invariant Signatures
Abstract
For shapes represented as closed planar contours, we introduce a class of functionals that are invariant with respect to the Euclidean and similarity group, obtained by performing integral operations. While such integral invariants enjoy some of the desirable properties of their differential cousins, such as locality of computation (which allows matching under occlusions) and uniqueness of representation (in the limit), they are not as sensitive to noise in the data. We exploit the integral invariants to define a unique signature, from which the original shape can be reconstructed uniquely up to the symmetry group, and a notion of scale-space that allows analysis at multiple levels of resolution. The invariant signature can be used as a basis to define various notions of distance between shapes, and we illustrate the potential of the integral invariant representation for shape matching on real and synthetic data.
Keywords
Object Recognition Kernel Size Shape Match Moment Invariant Shape RepresentationReferences
- 1.Alferez, R., Wang, Y.F.: Geometric and illumination invariants for object recognition. PAMI 21(6), 505–536 (1999)Google Scholar
- 2.Arbter, K., Snyder, W.E., Burkhardt, H., Hirzinger, G.: Applications of affine invariant fourier descriptors to recognition of 3-d objects. PAMI 12(7), 640–646 (1990)Google Scholar
- 3.Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. PAMI 24(4), 509–522 (2002)Google Scholar
- 4.Bengtsson, A., Eklundh, J.-O.: Shape representation by multiscale contour approximation. PAMI 13(1), 85–93 (1991)Google Scholar
- 5.Boutin, M.: Numerically invariant signature curves. IJCV 40(3), 235–248 (2000)zbMATHCrossRefGoogle Scholar
- 6.Brandt, R.D., Lin, F.: Representations that uniquely characterize images modulo translation, rotation and scaling. PRL 17, 1001–1015 (1996)Google Scholar
- 7.Bruckstein, A., Katzir, N., Lindenbaum, M., Porat, M.: Similarity invariant signatures for partially occluded planar shapes. IJCV 7(3), 271–285 (1992)CrossRefGoogle Scholar
- 8.Bruckstein, M., Holt, R.J., Netravali, A.N., Richardson, T.J.: Invariant signatures for planar shape recognition under partial occlusion. CVGIP:IU 58(1), 49–65 (1993)CrossRefGoogle Scholar
- 9.Bruckstein, M., Rivlin, E., Weiss, I.: Scale-space semi-local invariants. IVC 15(5), 335–344 (1997)Google Scholar
- 10.Calabi, E., Olver, P., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. IJCV 26, 107–135 (1998)CrossRefGoogle Scholar
- 11.Chetverikov, D., Khenokh, Y.: Matching for shape defect detection. In: Solina, F., Leonardis, A. (eds.) CAIP 1999. LNCS, vol. 1689(2), pp. 367–374. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 12.Cohignac, T., Lopez, C., Morel, J.M.: Integral and local affine invariant parameter and applicatioin to shape recognition. ICPR 1, 164–168 (1994)Google Scholar
- 13.Cole, J.B., Murase, H., Naito, S.: A lie group theoretical approach to the invariance problem in feature extraction and object recognition. PRL 12, 519–523 (1991)Google Scholar
- 14.Dickson, L.E.: Algebraic Invariants. John-Weiley & Sons, West Sussex (1914)zbMATHGoogle Scholar
- 15.Dieudonne, J., Carrell, J.: Invariant Theory: Old and New. Academic Press, London (1970)Google Scholar
- 16.Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pat. Rec. 26(1), 167–174 (1993)CrossRefMathSciNetGoogle Scholar
- 17.Forsyth, D.A., Mundy, J.L., Zisserman, A.P., Coelho, C., Heller, A., Othwell, C.A.: Invariant descriptors for 3-d object recognition and pose. PAMI 13(10), 971–991 (1991)Google Scholar
- 18.Forsyth, D.A., Mundy, J.L., Zisserman, A., Brown, C.M.: Projectively invariant representations using implicit algebraic curves. IVC 9(2), 130–136 (1991)Google Scholar
- 19.Van Gool, L., Moons, T., Pauwels, E., Oosterlinck, A.: Semi-differential invariants. In: Mundy, J., Zisserman, A. (eds.) Geometric Invariance in Computer Vision, pp. 193–214. MIT, Cambridge (1992)Google Scholar
- 20.Van Gool, L., Moons, T., Ungureanu, D.: Affine/photometric invariants for planar intensity patterns. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 642–651. Springer, Heidelberg (1996)CrossRefGoogle Scholar
- 21.Grace, J.H., Young, A.: The Algebra of Invariants, Cambridge (1903)Google Scholar
- 22.Hann, C.E., Hickman, M.S.: Projective curvature and integral invariants. IJCV 40(3), 235–248 (2000)CrossRefGoogle Scholar
- 23.Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. on IT 8, 179–187 (1961)Google Scholar
- 24.Kanatani, K.: Group Theoretical Methods in Image Understanding. Springer, Heidelberg (1990)zbMATHGoogle Scholar
- 25.Lane, E.P.: Projective Differential Geometry of Curves and Surfaces. University of Chicago Press, Chicago (1932)Google Scholar
- 26.Lasenby, J., Bayro-Corrochano, E., Lasenby, A.N., Sommer, G.: A new framework for the formation of invariants and multiple-view constraints in computer vision. ICIP (1996)Google Scholar
- 27.Lei, G.: Recognition of planar objects in 3-d space from single perspective views using cross ratio. Robot. and Automat. 6(4), 432–437 (1990)CrossRefGoogle Scholar
- 28.Lenz, R.: Group Theoretical Methods in Image Processing. LNCS, vol. 413. Springer, Heidelberg (1990)Google Scholar
- 29.Li, S.Z.: Shape matching based on invariants. In: Omidvar, O.M. (ed.) Progress in Neural Networks: Shape Recognition, vol. 6, pp. 203–228. Intellect, Bristol (1999)Google Scholar
- 30.Liao, S., Pawlak, M.: On image analysis by moments. PAMI 18(3), 254–266 (1996)Google Scholar
- 31.Miyatake, T., Matsuyama, T., Nagao, M.: Affine transform invariant curve recognition using fourier descriptors. Inform. Processing Soc. Japan 24(1), 64–71 (1983)Google Scholar
- 32.Mokhtarian, F., Mackworth, A.K.: A theory of multi-scale, curvature-based shape representation for planar curves. PAMI 14(8), 789–805 (1992)Google Scholar
- 33.Mumford, D., Fogarty, J., Kirwan, F.C.: Geometric invariant theory, 3rd edn. Springer, Berlin (1994)Google Scholar
- 34.Mumford, D., Latto, A., Shah, J.: The representation of shape. In: IEEE Workshop on Comp. Vis., pp. 183–191 (1984)Google Scholar
- 35.Mundy, J.L., Zisserman, A. (eds.): Geometric Invariance in Computer Vision. MIT, Cambridge (1992)Google Scholar
- 36.Nielsen, L., Saprr, G.: Projective area-invariants as an extension of the crossratio. CVGIP 54(1), 145–159 (1991)zbMATHCrossRefGoogle Scholar
- 37.Olver, P.J.: Equivalence, Invariants and Symmetry, Cambridge (1995)Google Scholar
- 38.Pajdla, T., Van Gool, L.: Matching of 3-d curves using semi-differential invariants. In: ICCV, pp. 390–395 (1995)Google Scholar
- 39.Reiss, T.H.: Recognizing Planar Objects Using Invariant Image Features. LNCS, vol. 676. Springer, Heidelberg (1993)zbMATHCrossRefGoogle Scholar
- 40.Rothwell, C., Zisserman, A., Forsyth, D., Mundy, J.: Canonical frames for planar object recognition. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 757–772. Springer, Heidelberg (1992)Google Scholar
- 41.Rothwell, C., Zisserman, A., Forsyth, D., Mundy, J.: Planar object recognition using projective shape representation. IJCV 16, 57–99 (1995)CrossRefGoogle Scholar
- 42.Sapiro, G., Tannenbaum, A.: Affine invariant scale space. IJCV 11(1), 25–44 (1993)CrossRefGoogle Scholar
- 43.Sapiro, G., Tannenbaum, A.: Area and length preserving geometric invariant scale-spaces. PAMI 17(1), 67–72 (1995)Google Scholar
- 44.Sato, J., Cipolla, R.: Affine integral invariants for extracting symmetry axes. IVC 15(8), 627–635 (1997)Google Scholar
- 45.Shashua, A., Navab, N.: Relative affine structure: Canonical model for 3d from 2d geometry and applications. PAMI 18(9), 873–883 (1996)Google Scholar
- 46.Springer, C.E.: Geometry and Analysis of Projective Spaces. Freeman, San Francisco (1964)zbMATHGoogle Scholar
- 47.Tieng, Q.M., Boles, W.W.: Recognition of 2d object contours using the wavelet transform zero-crossing representation. PAMI 19(8), 910–916 (1997)Google Scholar
- 48.Verestoy, J., Chetverikov, D.: Shape detect detection in ferrite cores. Machine. Graphics and Vision 6(2), 225–236 (1997)Google Scholar
- 49.Weiss, I.: Noise resistant invariants of curves. PAMI 15(9), 943–948 (1993)Google Scholar
- 50.Witkin, P.: Scale-space filtering. In: Int. Joint. Conf. AI, pp. 1019–1021 (1983)Google Scholar
- 51.Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. Trans. Comp. 21, 269–281 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
- 52.Zisserman, A., Forsyth, D.A., Mundy, J.L., Rothwell, C.A., Liu, J.S.: 3D object recognition using invariance. Art. Int. 78, 239–288 (1995)CrossRefGoogle Scholar