Probabilistic Multi-view Correspondence in a Distributed Setting with No Central Server

  • Shai Avidan
  • Yael Moses
  • Yoram Moses
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3024)

Abstract

We present a probabilistic algorithm for finding correspondences across multiple images. The algorithm runs in a distributed setting, where each camera is attached to a separate computing unit, and the cameras communicate over a network. No central computer is involved in the computation. The algorithm runs with low computational and communication cost. Our distributed algorithm assumes access to a standard pairwise wide-baseline stereo matching algorithm (\(\mathcal{WBS}\)) and our goal is to minimize the number of images transmitted over the network, as well as the number of times the \(\mathcal{WBS}\) is computed. We employ the theory of random graphs to provide an efficient probabilistic algorithm that performs \(\mathcal{WBS}\) on a small number of image pairs, followed by a correspondence propagation phase. The heart of the paper is a theoretical analysis of the number of times \(\mathcal{WBS}\) must be performed to ensure that an overwhelming portion of the correspondence information is extracted. The analysis is extended to show how to combat computer and communication failures, which are expected to occur in such settings, as well as correspondence misses. This analysis yields an efficient distributed algorithm, but it can also be used to improve the performance of centralized algorithms for correspondence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumberg, A.: Reliable feature matching across widely separated views. In: Proc. of IEEE Computer Vision and Pattern Recognition, vol. I, pp. 774–781 (2000)Google Scholar
  2. 2.
    Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery in database systems. Addison-Wesley, Reading (1987)Google Scholar
  3. 3.
    Bollobas, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  4. 4.
    Bollobas, B., Thomason, A.G.: Random graphs of small order (1985)Google Scholar
  5. 5.
    Brumitt, B., Krumm, J., Meyers, B., Shafers, S.: Ubiquitous computing and the role of geometry (2000)Google Scholar
  6. 6.
    Chetverikov, D., Matas, J.: Periodic textures as distinguished regions for wide-baseline stereo correspondence. Texture, 25–30 (2002)Google Scholar
  7. 7.
    Collins, R., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O.: A system for video surveillance and monitoring. CMU-RI-TR (2000)Google Scholar
  8. 8.
    Collins, R., Tsin, Y.: Calibration of an outdoor active camera system. In: Proc. of IEEE Computer Vision and Pattern Recognition, pp. 528–534 (1999)Google Scholar
  9. 9.
    Erdos, P., Renyi, A.: On random graphs 1 (1959)Google Scholar
  10. 10.
    Ferrari, V., Tuytelaars, T., Gool, L.V.: Wide-baseline muliple-view correspondences. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (June 2003)Google Scholar
  11. 11.
    Karuppiah, D., Zhu, Z., Shenoy, P., Riseman, E.: A fault-tolerant distributed vision system architecture for object tracking in a smart room. In: Schiele, B., Sagerer, G. (eds.) ICVS 2001. LNCS, vol. 2095, p. 201. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Levi, N., Werman, M.: The viewing graph. In: Proc. of IEEE Computer Vision and Pattern Recognition (2003)Google Scholar
  13. 13.
    Lopez de Ipina, D., Mendonca, P.R.S., Hopper, A.: Trip: a low-cost vision-based location system for ubiquitous computing. Personal and Ubiquitous Computing Journal 6 (2002)Google Scholar
  14. 14.
    Lynch, N.A.: Distributed Algorithms. MIT Press, Cambridge (1996)MATHGoogle Scholar
  15. 15.
    Matas, J., Burianek, J., Kittler, J.: Object recognition using the invariant pixel-set signature. In: The British Machine Vision Conference (2000)Google Scholar
  16. 16.
    Narayanan, P.J.: Virtualized reality: Concepts and early results. In: The IEEE Workshop on the Representation of Visual Scenes (in conjunction with ICCV 1995) (1995)Google Scholar
  17. 17.
    Pritchett, P., Zisserman, A.: Wide baseline stereo matching. In: Proc. International Conference on Computer Vision, pp. 754–760 (1998)Google Scholar
  18. 18.
    Mullender, S. (ed.): Distributed Systems. Addison-Wesley, Reading (1993)MATHGoogle Scholar
  19. 19.
    Saito, H., Baba, S., Kimura, M., Vedula, S., Kanade, T.: Appearance based virtual view generation of temporally-varying events from multi-camera images in the 3d room. In: Proc. of Second International Conference on 3-D Digital Imaging and Modeling (1999)Google Scholar
  20. 20.
    Schaffalitzky, F., Zisserman, A.: Viewpoint invariant texture matching and wide baseline stereo. In: Proc. International Conference on Computer Vision, vol. II, pp. 636–643 (2001)Google Scholar
  21. 21.
    Schaffalitzky, F., Zisserman, A.: Multi-view matching for unordered image sets, or how do I organize my holiday snaps? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 414–431. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Tanenbaum, A.S., van Steen, M.: Distributed Systems Principles and Paradigms. Pearson Education publisher, London (2001)Google Scholar
  23. 23.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Tuytelaars, T., Van Gool, L.: Wide baseline stereo matching based on local, affinely invariant regions. In: The British Machine Vision Conference (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Shai Avidan
    • 1
  • Yael Moses
    • 1
  • Yoram Moses
    • 2
  1. 1.The Efi Arazi school of Computer ScienceThe Interdisciplinary CenterHerzliyaIsrael
  2. 2.Department of Electrical EngineeringTechnionHaifaIsrael

Personalised recommendations